
Lecture Notes in
Computer Science
Edited by G. Goos and J. Hartmanis

236

TEX for
Scientific Documentation
Second European Conference
Strasbourg, France, June 19-21, 1986
Proceedings

Edited by Jacques D6sarm6nien

II

Springer-Verlag
Berlin Heidelberg NewYork London Paris Tokyo

Editorial Board
D. Barstow W. Brauer P. Brinch Hansen D. Gries D. Luckham
C. Moler A. Pnueti G. Seegmfi l ler J. Stoer N. Wir th

Editor

Jacques D~sarm6nien
Laboratoire de typographie informatique, Universit~ Louis-Pasteur
?, rue Ren6-Descartes, 6?084 Strasbourg Cedex, France

Conference supported by

CNRS (Centre National de la Recherche Scientifique)
SMF (Soci6t~ Math6matique de France)
Universit6 Louis-Pasteur de Strasbourg

Program Committee

J. Andr~
B. Beeton
H. Brown
G. Degti Antoni
D. Feingold
D. Knuth
D. Lucarella
P. MacKay
J.-J. Quisquater
B. Schulze

Organizing Committee

J. D~sarm~nien
R. Goucher
D. Lucarella

Conference Chairman

J. D~sarm~nien

IRISA Rennes (France)
Amer. Math. Soc. (USA)
Univ. Kent (Great Britain)
Univ. Milano (Italy)
EDF Clamart (France)
Stanford Univ. (USA)
Univ. Milano (Italy)
Univ. Washington (USA)
Philips Bruxelles (Belgium)
Univ. Bonn (FRG)

Univ. Strasbourg (France)
Amer. Math. Soc. (USA)
Univ. Milano (Italy)

Univ. Strasbourg (France)

CR Subject Classifications (1985): A.0, H.4.1, 1.7.0

ISBN 3-540-16807-9 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-16807-9 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting,
reproduction by photocopying machine or similar means, and storage in data banks. Under
§ 54 of the German Copyright Law where copies are made for other than private use, a fee is
payable to "Verwertungsgesellschaft Wort", Munich.
© Springer-Verlag Berlin Heidelberg 1986
Printed in Germany
Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.
2145/3140-54321

P R E F A C E

In this volume, the reader will find the texts of the contributions presented by the
participants at the second European conference on TE X for scientific documenta-
tion, held in June 1986 at the Centre culturel Saint-Thomas in Strasbourg.TEX,
a registered trademark of the American Mathematical Society, is the system fbr
typesetting scientific texts by computer, created at Stanford by D. Knuth.

One will notice by reading the list of participants, that the European audience of
~ jX is so important that this system is being recognized as the reference in its fie]Ld.
Furthermore, it is significant to mention that researchers in other disciplines have
used TEX for composing their works. Actually, one of the conclusive advantages of
TEX seems to me to be its printing quality, comparable to that of texts composed
by traditional means, but at much lower cost. This point is of course particularly
important for scientific texts, as well as for texts with limited circulation. The
presentation of R.Wonneberger proves this point. He suggested that all philologists
interested in TEX should establish contact with him.

TEX is a bare product. That is its strength but also its weakness. First of M1
the strong point: It allows a great portability to all materiNs and for all operating
systems; the final product depends only on the initiM source and, of course, on the
quality of the printer. The weakness then: The utilization of TEX None is no doubt
difficult; this is why most of its users have integrated it into a general environment
of document preparation. Most of the contributions presented at the conference
were related to this issue. This is the final evidence of the growing interest on TEX.

Moreover, the publisher Addison-Wesley displayed at the conference, and for the
first time, the five volumes of the series Computers and Typesetting by D. Knuth.
These assemble all original texts on TEX and on its companion METIClFONT. This
latter software was the heart of the report given by R. SouthN1. It is probable that
b~efore the next conference METAFONT will have been experimented by several
people, possibly in conjunction with the problem of storing the character fonts
needed by the laser printers.

In conclusion, I should like to thank those who helped me with the success of
this conference: The Centre.national de la recherche scientifique and the Socigt~
mathgmatique de France for their financial support, the Universitg Louis-Pasteur,

IV

the members of the Program Committee and of the Organizing Committee, and
especially Ray Goucher who advertised this conference in the TUGboat--the %F~
Users Group journal. I was also able to profit from Dario Lucarella who organized
the preceding conference in Como. Finally, I think that all of the participants
appreciated the efficiency and kindness of the secretary of the conference, Karen
Trantham.

Strasbourg, June 1986 J. DI~SARMI~NIEN

TABLE OF C O N T E N T S

Running TEX in an interactive text processing environment
W. Appdt

How to please authors and publishers: a versatile document preparation
system at Karlsruhe
A. Briiggemann-K1ein, P. Dolland, A. Heinz

An improved user environment for TEX
P. Chert, M.A. Harrison, d.W. McCarre11, J. Coker, S. Procter

The VORTEX document preparation environment
P. Chen, J. Coker, M.A. Harrison, J.W. McCarre11, S. Procter

EasyrI~X: Towards interactive formulae input for scientific documents
input with TEX
E. Crisanti, A. Formigoni, P. La Bruna

A multilingual T~X
M.J. Ferguson

INRST~X: a document preparation system for multiple languages
M.J. Ferguson

ASHTEX: An interactive previewer for TEX or The marvellous world
of AsHTEX
L. Gallot

A language to describe formatting directives for SGML documents
H. Le Van, E. Terreni

Retrieving mathematical formulae
D. Lucarella

Integrating TEX in an EDDS with very high resolution capabilities
P. Penny, J.-L. Henriot

The TEX-based document factory in a university environment: Process
model, implementation steps, experiences
H. ½L Petersen

32

45

55

65

74

89

98

120

131

136

vt

GRIF: An interactive environment for TEX
V. Quint, L Vatton, t-I. Bedor

Abstract markup in TEX
J. R6hrich

Designing a new typeface with METRFONT
R. Southall

"Verheifiung und Versprechen", A third generation approach to
theological typesetting
R. Wonneberger

145

159

161

180

Participants 199

R U N N I N G TEX I N A N I N T E R A C T I V E

T E X T P R O C E S S I N G E N V I R O N M E N T

Wolfgang Appelt

Gesellschaft fSr Mathematik
und Datenverarbeitung mbH

5205 Sankt Augustin
Federal Republic of Germany

A b s t r a c t

We describe an implementation of TEX on a workstation with a high-resolution
raster display. An editor, TEX and a screen preview driver are linked via an
UNIX t pipe, which allows a convenient interactive creation of complicated pieces
of text.

1. B a t c h and Interact ive Text P r o c e s s i n g

Text processing systems can be divided into two classes. The first class co'ntains
the so-called WYSIWYG-sys tems ("what you see is what you get"), the second
one the formatting systems.

When using a WYSIWYG-sys t em the appearance of a document on the dis-
play during the editing process is always identical to its printed form, except
maybe some slight differences due to different resolutions of the screen and the
printer. The content of a document and its graphical representation or layout are
created simultaneously and interactively. The layout of the document is defined
apart from its content and the text itself contains no instructions concerning its
graphical representation, at least from the user's point of view.

When using a formatting system the appearance of a document will be more
or less different from its printed form during the editing process. The author has
to insert processing instruction8 into his text to inform the formatter about the
desired graphical representation of the document. Formatt ing the document is
usually not done interactively but via a batch process.

There is no general answer what kind of text processing system is bet ter since
both have their pro8 and cona Since a lot of papers can be found on this topic
we will not discuss it here into greater detail (see e. g. [MEY82]).

Our own experiences with TEX([KNUS4]) , which is a formatting system, and
discussions with our users gave us the following impression: When an author

t UNIX is a Trademark of Bell Laboratories.

enters his text into the machine he usually concentrates on the contents of his
paper and does not worry about its appearance or layout. TEX's way of operating,
namely being basically a batch system that expects text with some "formatting
instructions", is widely accepted by the users, especially if they are using a high
level macro package as e. g. IATEX ([LAM86]). (Many users even prefer such a
system to a WYSIWYG-system which distracts their at tention from content to
appearance.)

There are, however, two important exceptions to that general statement:

- - If the author has to create a typographically complicated "piece of text" , e. g. a
mathematical formula or a table, or maybe if he wants to develop a tricky TEX
macro, "immediate visual feedback" is essential. He is quite annoyed if he
has to wait for printed output to see the result of his input even if such an
"iteration loop" takes only a few minutes.

- - If the author has finished the contents of his paper and the "only" thing left
is a "little bit fine tuning" on the layout (e. g. eliminating the famous "Over-
full \hbox"es, club or widow lines or ugly page breaks) he usually wants to
perform this task in an "interactive" environment. Otherwise this task might
be very time consuming, since a small modification one some page has often
unpredictable and undesired effects on subsequent pages.

In other words: Even (or especially) for such a highly sophisticated formatting
system as TEX there are sometimes situations where an operating mode "close"
to a WYSIWYG-system is desirable.

2. Requirements for an Interactive TEXt Processing System

Creating an interactive text processing environment around TEX requires some
special hardware and software facilities:

-- To allow a screen preview of the formatted text a high resolution raster dis-
play is necessary. The size of the screeri should he at least large enough to
show a complete formatted page. For scientific publications a size of about
30 cm height and 20 cm width, which is approximately A4-size, is usually the
minimum.

-- Since the editor, TEX and the screen driver are to run and display their results
simultaneously on the screen a multiprocess operating system including some
kind of a window manager is needed.

- - To achieve fast enough and guaranteed response times the system should run
on a stand-alone workstation basis. The integration into a t ime-sharing envi-
ronment would probably lead to some severe time problems.

A system fulfilling these requirements more or less satisfactory is the PERQ from
International Computers Limited (ICL, UK). The PERQ is a graphical worksta-
tion with a raster screen (1024 × 768 pixels, height x width) of approximately
A4 size, two megabyte RAM and about 34 megabyte secondary storage on a
winchester disk. Graphical input is possible via a tablet and a three button puck.

ICL also sells a 1024 x 1280 screen for the PERQ which is nearly A3 size. This
screen is very appropriate for a TEX implementation as described in this paper
since it allows to display a complete formatted A4 page on one half of the screen
leaving the other half for an editor and TEX window; see below.

The operating system is called PNX which is essentially UNIX Version 7 plus
some System 3 facilities plus some extensions for using the special hardware fa-
cilities of the PERQ (e. g. graphical input /output) . PNX has a ra ther convenient
window manager: Several processes can run simultaneously in different windows
on the screen; communication between processes in different windows is easily
possible.

The PERQ has a 16-bit bit-sliced processor which especially supports fast
raster operations on the screen. Processing speed is roughly about 0.5 MIPS.
Since the PERQ system was designed in the early 80s it does not represent the
latest state of the art in workstation technology.

3. T h e TEX I m p l e m e n t a t i o n on t h e P E R Q

For a complete understanding of this chapter the reader should know the basic
principles of the UNIX operating system (see e. g. [RIT78]) .

The implementation of our system on the PERQ can be divided into two rather
separate parts, the first one being the linkage of TEX and the screen driver, the
second one the linkage of the editor and TEX.

The first step towards a previewing system was some recoding of TEX's input /
output-system: we linked

term_in to stdin,
term_out to stderr and
dvi_file to stdout.

In other words, instead of writing the formatted text into a dvi_file TF~ writes it
to stdout which allows a linkage between TEX and the screen driver via a normal
UNIX pipe:

t e x I d r i v e r
Of course a dvi_file can be created by output redirection:

tex > dvifile

if printed output on paper is wanted. (Several hardcopy devices can be reached
from the PERQ via ethernet.)

TEX and screen driver run within two different windows on the screen. The
usual processing is on a pagewise basis, i. e. as soon as TEX has a compiled a
complete page it pipes its output to the screen driver for showing the formatted
text on the screen. Some recoding of TEX's buffering mechanism for dvi_file output
was necessary to really achieve that pagewise processing.

If the driver has displayed a complete page it will usually wait until the user
presses a button on the puck before it clears the driver window again and starts
showing the next page.

Processing time for TEX and driver for a full A4 page is currently about 20
seconds; some reduction might still be possible. This may look a bit slow at first
glance but the following should be considered: During the time the user reads the
formatted text displayed in the driver window, TF~ continues processing its input
file and starts compiling the next page(s). When the user presses the button after
he has read a page the next page will therefore usually appear "immediately".
In other words, since proofreading a page usually takes considerably longer than
20 seconds, TEX and driver process the text faster than the user can read it,
i. e. usually the system has to wait (when the pipe is full) and not the user.

Figure 1 shows a dump of the PERQ screen during a ~ run with screen
previewing. Screen dumps are obtained by writing the screen bit map onto a file
and printing this file on a Canon LBP 10 laser printer with 240 dots/inch. Each
screen pixel is blown up to 2 × 2 pixets on the paper, i. e. the characters look a
little bit "smoother" on the screen.

The TEX fonts for the screen, by the way, were produced by a rather quick
and dirty method: We took the fonts for 200 dots/inch devices, which are on the
standard distribution tape, and made 100 dots/ inch fonts (which is rather close
to the resolution of the PERQ screen) out of them by making one pixel out of
each four. This brute and force method did not create nice fonts, of course, but it
is better than nothing. When the new METAFONT and the Computer Modern
Fonts are available we shall create new screen fonts.

We have, by the way, a preliminary version of the new METAFONT already
running on the PERQ (the PNX adaptation was made by Se£n Leitch who sent us
his change_file8 by courtesy [LEI85]), but since we are still lacking font definitions,
except of one "toy font", it is currently (March 86) not of much practical value
for us.

This gave us a nice previewing system but for the situations mentioned above,
where an interactive text processing is desirable, the integration of a text editor
is necessary. We therefore included an editor into the pipe:

editor I tex I driver

The actual implementation, by the way, does not use the usual UNIX pipe, though
the user will see no difference. What we did is, that the editor writes its output
(the definition of output will be given in a moment) into an intermediate file and
any time this file is modified, TEX will read it and process its contents.

The linkage between the editor and TEX could be realized by a few lines of
C-code (see below) and some TEX macros which can be tailored to individual
applications.

The editor we use is a rather simple full screen editor which was writ ten by a
colleague of mine at GMD [KRE84], not especially for our TEX implementation,
by the way. We took this editor just for convenience since we had access to the
source code. It should not be a great problem to substitute any other editor for
it, maybe with some small modifications.

The definition of output, i. e. what the editor pipes to TEX , is rather trivial:

:::::::::::::::::::::::::::::

Die Herstellung wissenschattdicher Texte
in hoher typographlscher Qualit~t

WOLFQANQ APPELT

Gesellschaft ~ r Mathemat lk
und Datenve~arbe | tung mbH, B ~ n

Z u ~ u n l ~ Het4mr,- and $oJhmtz-gntwid~&nfen in
den ktrIzn Jahnn haben die l ~ d s t z i t fe~chalen, Hch a@
kmwntionellzn /~chenan/a~en res~e in /ioher tl, poj, afll/~¢/~t
~ua~Ft~ k~n~tellen. Dzr Atli&l be~hfzibt ~bei n~z lzn~
Sch~iztifkeiten end eini~ gnhdeldwng~a~beiten ~ G ~ in
~6e~m /knick

1. Bhtleltung

Unter dem Beg~f "fiuen~eheflliehe resle" solkn hn blgenden Texte ver-
standen werdea, bei denea mehrere Zekher.~tse {FonlJ), end unterschiedliche
Schrift~'~fk, n, n~g~:herweise Gr&~ken, Abb~dungen, Tabden und {msthena-
tische oder chemkhe) F o n n ~ bea~tigt werden und bei denen ebl kompli,iertu
Layout (ebt- oder mehrtpalliger Sats ni t Kopf- and Fuket'k.n end Fu~oten)
undunter Umstinden emfanlr~he Querverweke innerha~ des Textes erlmrder-
lkh rind.

Bb vor wenigen Jahren war die hblkhe Art der Herstellun| tokher Te~ to, d d
der Autor einet Textes sere Manesl~ipt einem Setser lab, de~ daraes Druckvor-
ialen "in Blei |egou~n" hat, ni t denea anschlie~nd der Text gedruckt wurd~
Der Autor s e~ t beeal - - ablgesehen yon ebter Schreibmaschine nit I~en tehr
be~hrinkten Fihilkeiten sur Gestaltung ebles Textes - - prakti~h keinerlei
I~l~..hkeiten, ebmn v~-nscha~lichen Text b~ angemessener Weke su Papier
su brinse~
Die~e 5ituatkm begann skh Mitre der teduiger Jahre nit dem Autkommen yon
Tbne-Sharb~-Rechnern et~u~ su inder~ Eine s6mdis va~hsende Zahl yon
Autorea, insbesondere im mlthematisch-naturwissenscha~tlkhea Berekh, gin|
d u e ~ber, ttre Texte ni t Hille yon Textverarbeitunpsystemen au{ Rechenanlw
|en ,u erstellen end aM der ange~cldoesenen Ausg&behardvare su drucken. Bb

[1
][Z

/?ont$/amssl@.t~mH

Figure 1: TE X and driver on the PERQ screen

Since it usually makes not much sense to take the complete file that is currently
edited, only those pieces of text that the user explicitly selects within the editor
will be forwarded to the TEX program. (Of course, it is not forbidden to select
the whole file.)

Example: Suppose an author wants to compose a complicated formula "inter-

actively". He then executes an UNIX shell script that opens three windows on the
screen: one running the editor, another running ~ and the third one running
the screen driver. Afterwards he will start entering his formula (or editing an
already existing one) within the editor. If he wants to see what his input will
produce he selects the corresponding lines of his input file, looks at the result in
the driver window, edits again, selects again, edits again etc.

The user never leaves the editor window during this process. He only concen-
trates on editing his input and does not have to jump around between the three
windows. The time required to see the formatted result within the driver window
depends on the amount of selected text, of course. If the user selects only, say,
a two lines formula, the formatted result appears "immediately" (meaning about
one to three seconds).

Figure 2 shows such an editing process for a mathematical formula. The se-
lected lines within the editor window are marked with an "O"-sign in the first
column.

The procedure for the final "fine tuning" of the layout, as described above,
could be done in a rather similar way. In this case the user might process the
text from the start to the end. If e. g. he wants to insert an explicit page break
somewhere he will do so and afterwards start processing of the remaining text
from there on again until he has processed the complete paper. Of course, the
processing time will be a bit longer in this case.

4. F u t u r e D e v e l o p m e n t s

Except of the editor which is written in C all software is written in WEB, i. e. for
installing the TEX system appropriate change_files were written. The screen driver
is also realized as a change_file to the DviType processor. At some few places
C-routines were used, especially the PASCAL-input/output was substituted by
corresponding C-functions, since the PASCAL routines are considerably slower
in PNX, and, of course, the graphical interface of the driver to the screen uses
some PNX system functions.

Nevertheless, we regard the implementation easily portable to other systems,
at least to UNIX systems with raster displays and window managers. There are,
in fact, currently some efforts for porting our TEX implementation on the PERQ
to other systems.

We are also working on the integration of graphics into TEX. To our opinion the
creation of graphics within a document should be kept separate from the creation
of the text and should be done by a dedicated graphics system, which in our
environment will run in another window on the screen.

The merging of textual and graphical information will be done by the driver.
Within the TEX input file the reference to the graphics will be realized by a TEX
macro which will reserve the necessary empty space on the page and furthermore
insert some " \ spec i a l " - code into TEX's output. The driver will "execute" the
" \ spec ia l " -code by fetching the desired graphical information from the graphics

Absch@m~ng des ~e.Identi~k~ie~s~is~l'os

iiiiiiiiiiiiiiiii;

p~S.w w~':.¢~ '
/,/

= ~ ~ ~z~ lJ'~) ' ~I~ Is'~), "'" ' ~h, IJ',~N~)
*{l}-~

N N

= H H ~,, I,,I, E~' , I*,1

= ~ ~ (n I~','1 ' line, I,,1

<<@l^^OZO :
.Merkmalsvektoren z_I und $\bsr z_l$ vorkommen, Gibt es die \MMQen
.des Haushalts z_I nur einmal in $1F_g$, so g i l t
g

@$$\leano{
@ \sum {\rho\in\Perm N} p(z(N)^×_\rho)
@=&\sum_{\rho\in\Perm~N} p(z 1^y_{\rho(1)}) *
@ p(\bar z_l~y_{\rho(Z)})*\cdots*p(\bar z_l^y-{\rho(N)}) \cr
@=C\sum {I=I}IN
@ \sum_{\rho\in\Perm_N \atop \rho(1)=i} p(z l~y_i)*

p(\bar z_l^y_.{\rho(Z)})*\cdots*p(\bar z__l^Ym{\rho(N)}) \cr
~=&\prod_{i=1}IN

\prod {\rho\in\Perm N \atop\rho(1)=i}
p(z 1~y i)*\sum {l=~ \atop l\ne i}IN p(\bar z_1^y_l) \cr

~=~\sum_{i~1}IN \left({N\fac\over N}
p(z_1^y_i)*\prod_{l=1 \atop Ikne i}IN p(\bar z_l^y_l) \risht)&(S)\cr

@}$S

In dem Nennerterm der Ba×esschen Formel tauchen denn nut noch N
.Terme auf ensteile yon SN\fac$ zuvor.

iMen kenn nun wieder die Wahrscheinlichkeit bereehnen, mit welcher die der
.Permutation ρ entsprechenden 2uordnungen korrekt sind:

$$\eqelign{
Ep(z_l,\idots,z_k~y_{Srho(1)},\Idots,Y_{\rho(k)},Sldots,×-{krho(N)})Ser

n m_open_i n : "/tmp/HQCSELECT. rex"

Figure 2: Creating a mathematical formula interactively

system (see [HOR86] for further details).
The user of the system might then easily edit textual and graphical information

within the window of the editor resp. the graphics system until he has reached
the desired result within the driver window.

References

KNU84 KNUTH, D.E.: The TEXbook; Addison-Wesley, Reading, Mass.,
1984.

HOR86 HORN, K.: Integration yon Graphik in TEX; In: Graphik in Doku-
menten, Informatik Fachbericht 119, Springer-Verlag, Heidelberg,
1986.

KRE84 KREIFELTS, TH.: h a c - Ein bitdschirmorientierter Texteditor fiir
UNIX; Benutzeranleitung; Interner Bericht der GMD, Sankt Augu-
stin, 1984.

LAM86 LAMPORT, L.: ~TEX: A Document Preparation System; Addison-
Wesley, Reading, Mass., 1986.

LEI85 LEITCH, S .: Implementing METAFONT on an ICL PERQ; In: TEX
for Scientific Publication, Addison-Wesley, Reading, Mass., 1985.

MEY82 MEYROWITZ, N., VAN DAM, A.: Interactive Editing Systems;
ACM Computing Surveys, Vol. 14, No. 3, 1982.

RIT78 RITCttIE, D . M. , THOMPSON, K.: The UNIX Time-Sharing sys-
tem, Bell. Sys. Tech. J. 57 (6), 1978.

How to Please Authors and Publishers:

A Versatile Document Preparation System at Karlsruhe*

Anne Briiggemann-Klein,
Peter Dolland, Alois Heinz

Institut f~/r Angewandte Informatik
und Formale Beschreibungsverfahren

Postfach 6980
D-7500 Karlsruhe

Abstract

We introduce a document preparation environment which supports the authors in the
production and publication of documents of high typographic quality. Our document
model is compatible with the SGML-model s~andardlzed by ISO, and formatting can
be done with TEX.

Keywords

Document models, document production, document publishing~ SGML, ODA/ODIF,
formatter, TEX , device driver, previewing, CRT composer

1. Introduction

Computer typesetting has become of great importance over the last years. Since the
publishing houses began to demand "camera ready copies" from the authors, a lot
of people have become interested in this new technology. It enables them to pro-
duce nicer documents than a typewriter can. This led to the development of efficient
textprocessing systems like TROFF, SCRIBE and TEX.

In this article we introduce a system that tries to bring both parties under the
same hew:ling: The authors are enabled to use its facilities for their own purposes like
getting a satisfying draft of what they have written, or the production of technical
reports. But they do not have to learn and to insert into their text all the involved
and device dependent markups the publishing houses might insist on! Nevertheless,
when it comes to the production of documents in the finest typographic quality~ our
system ties up with the experience and the environment of the publishing houses. To
their advantage, the authors' documents can be converted automatically into whatever
layout they might wish to produce.

* This project has been partially supported by the Deutsche Forschungsgemeinschaft
(Sto 167/1-1) and the IBM Corporation (L2/029 of the cooperation with the University
of Karlsruhe)

]0

Our system is based on a formatter independent document model which is com-
patible with the SGML-model standardized by ISO, see [SGML]. This enables us to
edit our documents with the help of a syntax-driven editor. Its controlling syntax is
a document itself and can be defined freely. Thus, it will be produced using the same
editor. Afterwards, the documents can be marked with arbitrary MarkupMaterial, for
example SGML- or TEX-commands.

As far as formatting and printing is concerned, our system is based on 2~X. We
shall briefly describe the TEX installations at our Institute. Especially, we introduce
a previewing facility for ~ on the IBM PC screen and a general method for the
development of drivers for CRT composers which are essential for printing documents
in high typographic quality.

2. Pub l i ca t ion of scientific d o c u m e n t s today
For a long period of time traditional methods of hot-lea~i typesetting have provided a
very high typographic standard in book printing. But some 15 years ago, these com-
position techniques became too expensive, especially for scientific documents which
require skilled personnel for the composition of mathematical expressions, tables, dia-
gramms

Introducing computer typesetting the financial condition of the publishing houses
became easier, but the typographical standard declined. In [K2] a careful investigation
of this trend is given, where the Transactions of the American Mathematical Society
are taken as an example, but cf. [MK] also.

Except for the typographic quality of the products, for the authors everything re-
mained as it had been. The typesetting houses fed the authors' text, interspersed with
formatting commands of a special formatting system, into the composition machine,
and the authors only had to give clear instructions about their typewriter written texts
as before.

A second alarming decline of the typographic standard that was combined with
additional effort for the authors occured, when the typesetting houses decided to save
the inhouse typing of the texts and instructed the authors to produce "camera ready
copies" with their own local equipment. The idea was to use these documents for
photographic duplication.

As a consequence of this publishing method, you can find dreadful contributions
(from a typographical point of view) in conference volumes, where typewritten ma-
thematical text is interspersed with handwritten special symbols which do not exist
in the typewriter's font supply, see Figure 1 in IBHR]. Therefore, it is no surprise that
some authors take refuge to some oldfashioned techniques of document production,
see Figure 2 in IS].

In spite of all these defects in the typographic quality, the production of camera
ready copies by the authors turns out to have some advantages. First of all, the
authors are encouraged to use word processing systems of their own which provide them
with better facilities in document preparation, e.g. easing corrections and renaming,
generating indices automatically, managing bibliographies On the other hand,
word and text processing systems give them the aesthetic satisfaction to improve the
typographic quality of all documents that are totally produced inhouse, like technical
reports, instructional material, slides for lessons. . . , compared with typewriter quality.

11

About "~": As M we can choose the smallest set A~q~ with

Vx (x~A)x~A) and ~r,s>,~>~Lsr~ ~ A

With Lemma 2 we get of course

Lemma ~: For every formula ~ of the theory of types one can find a

formula ~ of V~.*. ~ (0,1) with

eg is satisfiable in a finite model

~ ~is satisfiable on a finite non empty subset U of N with in-

terpretation of E by ~.

For getting a similar reduction for the satisfiability of ~ we need

a representation of the coenumerable predicates on ~2' that means,

of the complements of the recursive enumerable predicates on ~2"

Starting with equivalence (I) we have in the weak second order logic

Px1...x ~ -~ > ~M Vq (q= <~1(q),~2(q) > A R ~1(q)~2(q)x1...x ~
M~ Mq

^ M <~1(q),~l~2(q)>)).
Instead of using the weak second order logic on ~2 we can use the

first order logic on ~ :

PXl...xj~ ~m ~q (q~ ~Irg2^q= <~l(q),~2(q)>
m@ ~ qem

^R~l(q)~2(q)xl...x ~ ^ <~q(q),~l(q) >$ m

A(~2(q) = ~'~2(q) = <~1"~2(q),~2°~2(q)>

~<~1(q),~lO~2(q)> ~ m)).
For every coenumerable predicate QXl...x ~ on~ 2 we have the repre-

sentation

Qxl...x~ ~m~q (q~2vq @~Tv~R ~1(q)~R(q)xl...x ~ (2)
m~ q~m

V <~1(q),~2(q) > ~m v~2(q) ~

(<~I (q)' ~I e~2 (q)>~m v~2(q)~')).
Here ~ R~1(q)~2(q)xl...x S is formed by A and w out of the atomic

predicates x=~ , x~-~" and negated equations. The functions on both

sides of the negated equations are formed out of ~ , no, ~ , ~1'

~2 and identity functions by substitution. With the same equivalen-

ces which we used in the proof of Lemma I we get now

Lemma ~: For every ~-ary (~ I) coenumerable predicate Q on ~2

one can find a ~ @ N and a (~ + ~ +1)-ary quantifierfree expression R 2

Figure I

12

1"~ l~ I T~ ~ ~{~llll l l i O~ W ~ V ~

umi=O~ o~ ~r¢~.~_ st ru~rea ~ d we imves{jcjc~.e, ho~ vue~v'i~

cli3tdl~uEes kkro~k kkcnn, ~,rst, we give ~e c~rr;w~fJons. "For
~Ll ~ro~ sfzr~cJz~r~s "1- a~d U vJe_ de_~i~e

-FaU = < E_Tn _kU, £ T n e L I > a~a
- I 'UU = < § T u k U , a_TU eLI >

l~roperk 9 t. 20

"For" ~LL T ~,,4 U , s~ck ~:kaL e T = ~L3 , we have
q ' ~ U = l n U .

1~oo~
"1" ~ L4

: { properk3t 1, 12 }
<{x: xek_U ^ xtQ_T~k_T, x}, a l l>

<{x: × ~ u ^ x~_kT: , } , o-Fn ~_U>

< _kTn_kU, _~TagU>
: { a ~ . o ~ n}

~ n U
(End o¢ prop~c~l and proal t)

t%pz~ ~.~
~/e.OVlV~ diskrlbuk.~ ~ .~ro~ UniO~ a n ~ 'lm~e_r$~rJc{o~ O(~

~crcxc:~ stru~-_~res w~.h ecluaJL c&ph~be~s.
#~ooP

l~or ate -T, T', and bl , such k.k~(: 9T=~_T', we ~ve
u ~_ (T u T ')

U w < kT U k T ' , c~T_ >
: { ~ r . oc ~ }

<{x" xe(gTuaU)*,,xI'~U¢_kU ^xI'gT~E_Tuk_T" . } , e T u g U >
: { cc~lculu~ }

Figure 2

13

From this point of view, the crisis of the typesetting houses has speeded up the
development of software tools llke TROFF, SCRIBE or TEX, which enable the authors
to produce documents by themselves in a typographic quality which they hardly would
have imagined to be so high some years ago.

But even these systems cannot ensure real top quality in typesetting. In order to
realize the finest quality for documents, one still needs experts in typography who,
for example, design the format of a book or a journal. Therefore, it makes indeed
much sense to claim the competence of the publishing houses for layout design. Thus,
the next aim of the publishing houses is to get the documents from the authors in a
machine readable form, possibly interspersed with special markup material specified
by the typesetting houses for further computer processing, see [EP].

But two dangers are hidden behind this evolution: First, the typesetting houses
might impose particular markup rules on the authors that contradict their own view
of the documents or are incongruous with the markup used in earlier versions. This,
of course, adds some more difllculties to the author's job.

Second, the authors are again going to be completely subordinate to the pubUshing
houses if they want to see a formatted version of their documents.

The first danger can be prevented by the invention of suitable document models
which are designed for the special needs of both parties. We will describe these docu-
ment models in the next chapter. On the other hand, the independence of the authors
can be preserved by the development of a document workstation which is based on
such a document model and enables the authors to get a satisfying formatted draft of
their documents at any time they want. But in cooperation with a publishing house
it shall be possible to print the document in the highest typographic quality. We axe
presenting here a concept of a document workstation that fulfils these requirements
and is perfectly able to resolve the crisis between authors and publishers.

3. N e w d oc u me nt mode l s

Before the publishers left the whole job of composing the documents to the authors,
there was a very reasonable division of labour between authors and compositors. It
was the authors' responsibility to put their ideas into well structured sentences and to
make the logical structure of their documents clear to the reader by partitioning it into
chapters, sections, paragraphs, tables It was the compositors' job to translate this
logical structure into an adequate physical layout, in order to ensure the best possible
readability.

In this way two views of a document arise. The first one is the authors' logical
view. To them a document is a hierarchically organized structure consisting of logical
objects. A book, for example, consists of a table of contents, a sequence of chapters, a
bibliography and an index. A chapter in turn consists of a heading and a sequence of
paragraphs, tables or figures, and a paragraph may consist of letters, special symbols
and mathematical formulae.

The second view is that of the compositors. They design the optical layout of the
logical units: For example, they begin a new chapter on a new page, choose bold 12
point letters for the headings, make an indentation of 3 pica for the first line of a
paragraph and set the index in a double column format using an 8 point font.

14

The authors communicated the logical structure of their documents to the com-
positors implicitly by a preliminary optical layout, namely the way they wrote it
down, and additional marginal notes which were interpreted by the compositors. In a
computerized composing environment, however~ such markups have to be interpreted
automatically, i.e. the computer typesetter must get special formatting commands to
produce the desired format.

Many text processing systems require a similar proceeding. The users have to
intersperse their text with certain formatting commands which refer directly to the
layout, like "center the following text in a new line." This way of proceeding makes it
difficult or even impossible to change the layout style of the text afterwards.

For example, once the decision has been made to write section headings and subsec-
tion headings centered on a line of their own and once the corresponding formatting
commands have been entered, only by a special human effort these different kinds of
headings can be distinguished again in order to set, for example~ the section headings
as before but the subsection headings flush left.

Because almost all WYSIWYG systems use this method of determining the layout
of the text at the moment the letters are entered, the original meaning of WYSIWYG~
"what you see is what you get," has been converted to "what you see is all what you've
got," see [L].

In the early 80's, the idea came up to markup the logical structure of the text
instead of intermerging plain formatting commands, see [G]. Such a document with a
ContentsRelatedStructuringcan be read by a parser that replaces the logical delimiters
by special MarkupMaterial like formatting commands. The parser knows from certain
processing instructions called MarkupDirectives by which formatting commands the
logical markup shall be replaced.

Thus, in a document with logical .markup, a section heading is not marked by
a "centerline"-command but by a designation of the type <begin section heading>
"text of the section heading" <end section heading>, and the marks <begin section
heading> and <end section heading> can later be replaced by formatting commands
according to the MarkupDirectives which, for example, perform the centering of the
included text.

As a matter of fact, it would be a tedious job to define new MarkupDirectives
for each single document. Therefore, all documents of the same type or the same
logical structure are grouped to a single document type (DocType). To the DocType
"book," for example, could belong all documents which consist of a table of contents,
a sequence of chapters, a bibliography and an index, where all chapters comprise a
chapter heading and a sequence of paragraphs, tables and figures According to its
hierarchical structure, such a DocType can be described by a context-free grammar.

So the MarkupDirectives are no longer associated with sing/e documents; instead,
they can be defined on a higher level for the Doc Type.

Therefore, at the very beginning of the document model comes the definition of
DocTypes. To each DocType one can produce several ContentRelatedStructuredDoc-
uments and define several MarkupDirectives. Each combination of a ContentRelated-
StructuredDocument and a MarkupDirective can be used to yield a concrete document
in layout form, see Figure 3.

From the viewpoint of typesetting houses this means that they expect from their au-

CRSD1

/ t \

DLF11 \
,/ \

/

/ DLFnl
/

DT / ~/
I\ /
I \ / \ . /
I 7~ /
! / \ /

MD1 - \ /
\

,, /

MDn

CRSDm
\

\
\

DLFlm \

\

DLFnm

DT:
CRSD:
MD:
DLF:

DocType
ContentsRelatedStructuredDocument
MarkupDirective
Document in Layout Form

F igure 3

thors machine readable documents with logical markup and that they have to translate
this logical markup afterwards in layout-related formatting commands.

No matter whether this is done automatically or by hand (as a provisional solution),
the question arises whether the resulting perfectly high typographic quality is worth
the additional trouble. Therefore, by standardization efforts it is tried to minimize the
extra work.

The international standardization institutions E C ~ and ISO are presently work-
ing out two document models which incorporate the ideas described above, namely
ODA/ODIF (Offlce Document Architecture/Office Document Interchange Format) for
the office area and SGML (Standard Generalized Markup Language) for the publishing
area, including description languages and transmission rules, see [ISO] and [ECMA].

4. The concept o f a document workstat ion environment

In the following we describe a project conducted at the Institut fidr Angewandte In-
formatik und Formale Beschreibungsverfahren at the University of Karlsruhe. Its aim
is to provide authors with support in the production and publication of scientific doc-
uments.

The project deals with four components, namely the document workstation, the file
server, the printing and formatting service, and a telecommunication interface.

From the users' point of view, the document workstation is the central constituent.

16

Here the (experienced) users can define new DocTypes and appropriate MarkupDirec-
tires. But the main purpose is tha~ ~sers without any special knowledge in formatting
languages and typography can choose a predefined document type and, by the help of
an editor that is driven by this type, can edit documents of this type. Then they can
use predefined MarkupDirectives to translate their ContentRelatedStructuredDocu-
ments to a text data stream interspersed with formatting commands for the printing
process.

The printing and formatting service provides formatters which are able to lay out
scientific documents. It gets the text and the formatting commands from the work-
station and enables the document to be printed on different output devices (paper,
screen, foto film).

The communication between the workstation and the printing and formatting ser-
vice is consciously designed as a batch system, in order to preserve the reasonable
division of labour between the editing and the formatting processes. Therefore: no
WYSIWYG! The authors should not continously be misled to worry about the lay-
out while formulating the sentences. Instead, they should totally concentrate upon
the contents. The printing and formatting service, however, has to make available a
formatted draft copy of the authors' texts shortly after the editing session.

The file server stores DocTypes, MarkupDirectives, and documents, the latter in
their different states as ContentRelatedStructuredDocuments, documents containing
MarkupMaterial or formatted documents. Furthermore, the file server controls ac-
cess rights and the communication between different authors working on the same
document, saves different versions of documents and supplies a document retrieval
interface.

In addition, a telecommunication interface must be available.
Summarizing, we provide the authors with a homogeneous and convenient environ-

ment which enables them to produce their own documents in a satisfying quality. As to
the communication with the publishing houses, note that new MarkupDirectives can
mark these documents with any markup the publishers could insist on, using the same
ContentRelatedStructuredDocument, in order to achieve finest typographic quality.
Thus authors may fulfil whatever requirements the publishing houses may impose on
them in the future.

In the following sections we describe the single components of our project in more
detail.

5. The p r in t ing and f o r m a t t i n g service, or: T F ~ at K a r l s r u h e

The printing and formatting service of our project is based on TEX. TEX has been cho-
sen for several reasons: First, there is no doubt that TEX gives the finest typographic
quality of all formatters currently available. For example, the line breaking algorithm
implemented in TEX is so efficient that only two hyphenations were necessary in the
three pages of introduction to D. Knuth's TE~book, see [K3].

Second, TEX generates a device independent output, which therefore can be typeset
on a great variety of output devices. For the importance of device independent output
see [B], for example.

As a very important matter of fact, the input language of TE~ is powerful enough
to allow a user-friendly interface to be built on it. And, last not least, TEX is widely

]7

spread at universities and institutions, thanks to the farseeing decision of D. Knuth to
make TEX available as public domain software.

TEX has a long tradition at our institute. In September 82, TEX was running on a
Burroghs B7700 which has been put out of service in the meantime. This was the first
TEX installation in Germany. Today TEX is implemented on the following computers:
• TEX Version 1.1 on a Siemens $7881 under BS3000
• TEX Version 0.9999 on a Siemens $7561 under BS2000 (currently not in use)
• TE X Version 1.1 on a NCR Tower under UNIX
• TEX Version 1.1 on an IBM PC XT/AT under MSDOS (PCTEXby Personal $]~X

Inc.)
All these computers are interconnected by the LINK-net (Lokales Informatiknetz

Karlsruhe), and text and binary files can be transfered between all of them. All
scientists (and a great part of the technical staff) at the Institute have a terminal to
the LINK-net in their offices.

Via the $7881, DVI-files can be transfered to an electrostatic plotter Benson 9424
which has a resolution of 254 dots/inch. It is also possible to output on an IBM
matrix printer or an Epson LQ1500 via an IBM PC. Shortly, an IBM PC will be
interconnected with a Corona Laser Printer which has a resolution of 300 dots/inch.
The drivers for the IBM PC are by Personal TEX Inc. .

In order to have a previewing possibility, a driver for the screen of the IBM PC - -
equipped with a Hercules graphics card - - has been developed. For that purpose, we
first of all had to scale the PXL-files of TEX for the new resolution. We had got PXL-
files for a resolution of 240 pixels per inch only, but the resolution of the screen was
about 90 plxels per inch (in the horizontal). We therefore developed a special program
(PXLSCALE) for converting given PXL-files for an arbitrary resolution into a new
resolution. This program reads a PXL-file and converts it into an internal format,
then calculates the new widths and heights of the characters, composes the new (in
our case more coarse) raster and writes it back converting it into the external format
again. The algorithm used for the evaluation of the new raster is rather primitive.
A pixel in the output-raster is set black if it is covered by a certain amount of black
pixets in the input-raster, otherwise it is set white. Furthermore, the algorithm obeys
the rule of not to dissect parts of a character which should be connected. It does not
pay attention to certain properties such as symmetry, perceptibility

In order to improve the appearance of the scaled fonts we used another program
which allows to edit PXL-files by hand. This editing was done for the most frequently
used fonts only because it is not an easy work.

The driver program itself was developed by changing the program DVItype, which
is a part of the TEX-system delivered on the distribution tape. The driver program
interprets the DVI-files produced by TEX and displays them on the screen of the IBM
PC in the same way they would be printed on paper but with resolution and quality
reduced. All the programs described in this context are written in IBM-Pascal and were
developed on IBM PC's which were placed at our disposal by the IBM Corporation,
in a cooperation between IBM and the University of Karlsruhe.

For draft copies, technical reports, contributions to journals and proceedings, these
output possibilities have shown to be sufficient in quality. But for the production of
books it is most desirable to get the output on a CRT composer. Therefore, a TE X

]8

driver for a CRT composer DIGISET 400T20 is being developed in cooperation with a
typesetting house at Karlsruhe.

In a CRT composer the light emitted by a cathode ray tube falls on a photographic
film. Different from many laser printers, CRTs do not process bitmaps, but they
control the processing of fonts by an instruction language which is similar to that of
the DVI-files.

As to DIGISET composers, its instruction language enables the user to apply either
Digiset fonts whose pixel patterns are on disk or user defined fonts whose pixel patterns
are fed in together with the control commands.

Basically, a DIGISET driver for TEX can make use of both ways of processing the
DIGISET offers. But if the DIGISET fonts shall be used, the proper TFM-files have
to be produced for TEX. On the other hand, if TEX-fonts shall be used, the PXL-files
must be converted into DIGISET format. Due to the high quality of the DIGISET fonts,
it would be desirable to make the DIGISET fonts available. But for copyright-reasons,
it is very difficult to get all the informations on DIGISET fonts which are necessary to
derive the TFM-fonts for TEX without too much effort. Therefore, we decided to use
the TEX fonts.

Thus, the job of writing a DIGISET driver consists of two major parts. First, the
DVI-commands have to be translated into equivalent DIGISET command sequences.
Second, the PXL-fonts must be converted to DIGISET format.

The first task has been settled by the program DVItoDIGI, see [J]. In order to test
this program without having the PXL-fonts converted yet, we proceeded as follows.
To each TEX-font we chose a DIGISET-font which was as similar as possible. These
DIGISEW-fonts were used by the driver instead of the original TEX-fonts.

After struggling with the faulty and incomplete documentation of the DIGISET
composer, the program turned out to work well. But the differences between the
printed fonts and those which had been used by TEX had dramatic consequences
which made the output unacceptable, see figure 4.

Therefore, we started to solve the second problem, namely to convert the PXL-files
into DIGISET format.

Two problems arose. Due to different systems of typographic measurements, the
resolution of the TEX-fonts did not exactly fit any of the resolutions available on the
DIGISET. To get the most out of the high resolution of the DIGISET, we decided to
start with the best TEX-fonts we had which have a resolution of 600 dots/inch.

The closest approximation to this is the vertical resolution of 100/11.25 dots /Punkt
on the DIGISET. Therefore, a TEX-character will appear by a factor of 0.99896 smaller
than intended by TEX when printed on the DIGISET. In order to maintain the original
proportions, all horizontal and vertical measures must be multiplied by this (small)
factor.

The second problem is, that the vertical resolution of the DIGISET composer is 1.2
times greater than the horizontal one, whereas our PXL-fonts all come with identical
horizontal and vertical resolution. Therefore the PXL-files have to be scaled vertically
by a factor of 1.2.

The translation of PXL-fonts into DIGISET format is done by the program PXL-
toDIGI, see [Sch]. This program first decodes a PXL-file and extracts to each character
the matrix of the black and white pixels. Then the patterns are scaled vertically by 1.2.

t9

3. SKELETON STRUCTURES FOR SETS OF ISO.ORIENTED OBJECTS

There are two well known skeleton structures which have proved to be useful for solving various problems
¢olving rectangles: The segment tree of ~BW0 and the tile tree of ~.N4cCI] which was independently discovered

in ~EO but was called interval tree there. We show that both structures can be used in an algorithm to solve
the rectangular visibility problem of the previous section,

The le] and right boundaries of all rectangles in the given set of n rectangles impose a discrete raster on
the horizontal x,,axis. We can assume that this raster is normed in such a way that it becomes a raster over

a subset of integers. The horizontal projection of each of the n rectangles is a closed interval consisting of a
contiguous sequence of elementary fragments. First we describe how these intervals are stored in a segment
tree:

The (empty) segment tree (skeleton) is a binary tree of minimal height such that the i,,th leaf both
represents the i, th raster point and the closed open interval .~i, i + t), i.e. the i--th fragment. Each internal

node represents the union of all fragments which belong to the leaves in the subtree defined by it. Each
closed interval Ai, jO, i.e. each consecutive sequence of fragments inclusive the two raster points i and j of

the boundary of the interval can now be represented by the nodes which cover a subinterval of the given
interval and are as close to the root as possible; the right boundary of a closed interval is represented by a
leaf. It is well known that O(Iog n) nodes always sufce to represent an arbitrary interval. Each interval and
the corresponding rectangle is associated with all those nodes whose union form the interval; i.e. each node

has its associated node list of intervals. While the skeleton of the segment tree remains fixed these node lists
change dynamically according to what intervals are currently active.

The following Figure 1 shows an example of a set of rectangles, the segment tree skeleton defned by the
set and the node lists of all nodes which are used to represent the intervals currently cut by the scan line.

We may furthermore assume that the internal nodes of the segment tree skeleton contain appropriate
routing information to guide a search for a raster point. (One possibility is to assign to each internal node
the minimal value represented by the leaves of its right subtree.)

The structure is semidynamic in the following sense: Initially, i.e. before the scan line meets the top
boundary of the topmost rectangle, all node lists are empty. Whenever the scan line meets the top boundary
of some rectangle r which has e as its le] and e as its right boundary the interval ,~e, ~0 is inserted into the
structure. This consists of appending r's name to the node lists which represent interval Xe, ~1~I. Similarly,

whenever the bottom boundary of some rectangle is met the name of the rectangle is deleted from all node
lists which are used to represent the corresponding interval. Finally, inverse range queries can be posed:
Given an edge e which is the le] or right boundary of some rectangle, we can determine the names of all
(projections of) rectangles which contain e. Simply use the skeleton of the tree as a search tree for the t3raster
point! e and report all names of rectangles (or:intervals) appearing in node lists on the search path.

When implemented appropriately the above structure has the following characteristics (cf.~BW0,e.g.):
Space required to store n intervals S(n) = O(n log n)
Insertion time O(Iog n).
Deletion time O(logn).
Query time (log n + k), where k is the size of the answer, i.e. the number of elements reported when

answering an inverse range query.
We could directly use this structure as the structure L in the above given algorithm to solve the

rectangular visibility problem:What remains to be shown is that we can perform visibility tests. They
can be carried out as follows. In order to check whether or not a vertical edge e is visible at some scan
point we determine all currently active intervals (ractangle projections) which contain the edge e. (This is

an inverse range query with a raster point as query point). These intervals represent exactly those rectangles
which may hide e. Thus, it sul~ces to evaluate the plane,equations of these rectangles at the scan point and
determine the rectangle with minimal distance to the observer. If and only if this rectangle has e as its le]

or right boundary the edge e is visible (at e'sintersection with the scan line).
Performing visibility tests as just described can, of course, be quite time consuming. For, the node lists

may have length up to O(n) which implies that a single visibility test may take time O(n) as welt. We can
improve this if we maintain the lists of names of intervals representing rectangles in sorted order according
to the relative distance to the observer: Each node list contains the intervals representing the currently

active rectangles ordered as follows: Let (x,y) be a point where x lies in the interval of the node and y is the

Figure 4

20

Finally, the scaled bitmaps are coded to DIGISET format.
Because the DIGISET composer is located at a typesetting house in Karlsruhe,

a situation that prevents us from accessing it freely, we had to test the program
PXLtoDIGI without this composer. In order to test the scaling procedure, we printed
the scaled characters on a lineprinter and inspected the product visually.

For the test of the coding procedure, a decoding program has been used which was
originally developed for another purpose. The application of the coding program first
and the decoding program afterwards did not affect the character patterns. Therefore,
the coding procedure can be considered to be correct.

The program DVItoDIGI and PXLtoDIGI, as described above, are completely
tested. Their extent is about 2600 resp. 2000 lines of source text. Both programs
are linked together and must be tested again. We are planning to install the fonts gen-
erated by the program PXLtoDIGI on a disk in the typesetting house permanently.
So we can save the transfer of the font data together with the DIGISET commands for
each typesetting job. Furthermore, we are planning to install the program M E T A -
F O N T by D. Knuth to get the PXL-fonts in that resolution that fits the DIGISET
composer best.

6. The general concept of the document workstation

From a logical point of view, documents are - - basically - - hierachically organized
structures. (Note that references do not disturb this hierarchical structure, because
only their content(!) depends on the structure of the concrete document.) This phi-
losophy has been incorporated into the general structure-editors NLS/Augment, later
SRI International, of Englbart and the XS-l-family of Burkhart and Nievergelt, [M],
the formatting system SCRIBE of B. Reid, IF] which forms the basis of the document
editor of J.H. Walker, [M], and the TEX macro package LATEX of L. Lamport, [L]. In
[Ki], an abstract document model is proposed which generalizes all these models. Also
the standardized document models ODA/ODIF, [ECMA], and SGML, [ISO], follow
this philosophy.

The theory of formal languages supplies an important tool for the description of
hierarchical classes, namely the context-free grammars. Context-free grammars are
commonly used in the syntax specification of programming languages. Here, a program
simply is a string of symbols produced by the context-free grammar. In our philosophy,
however, a context-free grammar, i.e. a document type, produces a derivation tree with
the text of the document at its leafs. This derivation tree is precisely what we call a
ContentRelatedStructuredDocument.

A syntax-driven editor has been designed, whose controlling syntax (i.e. the Doc-
Type) can be defined freely. But how can we describe the special grammars which
correspond to DocTypes and are able to drive a document editor?

The crucial idea is that a context-free grammar again can be regarded as a docu-
ment of a special type which is called DocTypeSpec, because it specifies DocTypes.
Assume that the grammar/document DocTypeSpec has the type DocTypeSpec again.
Then the situation becomes really nice, because one can use the same editor to define
DocTypes (by driving it by the DocType DocTypeSpec) or to edit documents of a
special type (by driving it by this type which must have been defined earlier).

2]

T. The speci f ica t ion of the D o c T y p e " D o c T y p e S p e c "

Our next job is the specification of the DocType ~DocTypeSpec" which will be done ~n
a (possibly) new version of an extended BNF-form. We start with a verbal description
of the extensions.

We use a constructor for alternatives [At, IA2[...]A,~], which means that precisely
one of the expressions AI, . . . ,A,~ has to be chosen. This gives us the possibility to
summarize different rules with the same lefthand side as a single ~object definition"
(ObjDef).

As occurence indicators we use '*' (star), '÷' (plus) and '?' (optional), which have
to be prefixed to the operand. '*A' ('+A') means, that the expression 'A' has to be
evaluated arbitrarily often (but at least once). '?A' means, that the evaluation of 'A'
is optional.

By the way, introducing occurence indicators does not only make the grammars
more readable, but also avoids unnatural asymetries in the derivation trees which
stem from the use of recursion. We prefer prefix notation to postfix notation in order
to support the interpretation of expressions from left to right.

Furthermore, we distinguish between two different kinds of terminals. In our no-
tation, "internal terminals" are specific characters which are defined directly by the
DocTypeSpecification. Such characters are delimited by simple quote marks (' . . . ') .

In order to avoid specifying a DocType down to the character level, it is conve-
nient to introduce terminals which represent conten~ classes of legal input by their
identifiers. These "external terminals" are not specified further in the DocTypeSpec-
ification. The evaluation of these external terminals initiates the DocTypeInterpreter
m the kernel of our system - - to call another program which takes over the control of
the user's input. This may involve very different processes, for example the interpreta-
tion of regular expressions to fill up forms or also special editors as word-processors or
graphic editors. Especially, external terminals could call the DocTypeInterpreter itself
with a new DocTypeSpecification as controlling syntax, in order to include other docu-
ments. Naturally, such programms need suitable interfaces to the DocTypeInterpreter.
External terminals start with a '#', followed by an identifier.

In figure 5 the Doctype "DocTypeSpec" is specified, which itself specifies all Doc-
Types.

Three external terminals are used. Their meaning is as follows:
• #ALPHA: any sequence of letters and digits
• #CHARS: any sequence of printable characters
• #EXTERN: any identifier of an external terminal

Note that the DocType "DocTypeSpec" itself belongs to the class of DocTypes it
defines. Therefore, the specification of any DocType can be done by syntax directed
editing itself.

As in the field of programming languages, there are additional syntactic constraints,
which cannot be formulated in a context-free way. We should, e.g., postulate for the
DocType "DocTypeSpec" that every ObjectName must be defined uniquely, i.e. occurs
only once at the lefthand side of an ObjectDefinition.

Later on we will extend our DocType concept such that additional constraints can
be integrated in the DocTypeSpecification.

22

DocTypeSpec ::= +ObjDef.

ObjDef ::~ ObjName ~ ::~' Sequence ' . '.

ObjName ::-- #ALPHA.

Sequence ::-- Term * ('u' Term).

Term ::2 ? [' , ' 1%' [' ? '] [ObjName I c#,
I '~' #CHARS ~" [Alternative [~('

Alternative ::~ ' [' Sequence *('[' Sequence) '] ' .

E X T E R N
Sequeace ') '].

F igure 5

8. The in t e rp re t a t i on of DocTypeSpec i f lca t ions

One gets a specific ContentsRelatedStructure from a DocTypeSpecification by speci-
fying for each iteration operator which is to be evaluated, how many iterations take
place, and for each construct of alternatives which alternative has to be chosen.

Then a ContentsRelatedStructuredDocument consists of a ContentsRelatedStruc-
ture and the contents, which is fixed by evaluation of the external terminals.

Figure 6 shows, how the recursive structure of a DocTypeSpecification is mirrorred
in the recursive structure of modules calling each other while interpreting DocType-
Specifications. Interpretation here means that the system sets up a ContentsRelated-
Structure according to a DocTypeSpeclfication in interaction with the user.

An object is interpreted by interpreting its defining sequence. Thereby references
in the internal representation are established to enable the manipulation of an object
as an entity. A sequence is interpreted according to the order of its Tern~.

In the case a Term contains an occurence indicator, the user decides about the
specific structure. The occurences of the Term's body have to be counted and the
according number has to be stored at the beginning of the internal representaiton of
the Term.

For the interpretation of the Term's body different possibilities exist according to
the second alternative construct in the definition of the object "Term" in figure 5.
• An ObjectName causes the interpretation of the identified object. In this case the

position of the corresponding definition has to be seeked.
• Internal terminals need not be taken over into the internal representation of a

document, because they are elements of the DocTypeSpecification.
• External terminals initiate the call of a program under whose control the user can

enter text or other data in a system buffer. The internal representation only gets a
reference to these data.

• Subsequences cause their interpretations as a sequence. In contrast to the objects
identified by names, their manipulation as an entity is not supported.

• Alternatives produce a menue which asks the user for selection. Depending on its
choice, a number is stored in the internal representation of the ContentsRelated-

23

DocTypel.uterpreter

ObjDefInterpreter

Sequencelnterpreter
for every Term

Ill

Termlnterpreter'

IterationOperator?

n o :
!

y e s : !

if there is !
a choice: t

- - - N '

new iteration
if yes:

KernelInterpreter
calBe:

Objec~Name

internal terminal

external terminal

Subsequence

AIteraatiee

corr. to selection

Presentation
on the screen

special function:
contents defined
by user

Show menu with
Alternatives;
read the choice

Figure 6

24

Structure. Afterwards, the selected subsequence is interpreted.
The DocTypeInterpreter does not fix the concrete layout of questions, warnings and

error messages. This will be done by EditorDirectives depending on the DocType.
Thanks to its separation from the contents, the ContentsRelatedStructure can be hold
in the main memory. Therefore it is rather easy to manipulate this structure.

9. Integrating a reference concept

The function of ObjectNames is to point to an ObjectDefinition. If ObjNames appear
in a DocTypeSpecification as strings without any additional structure, this reference
character cannot be realized in the most efficient way. Therefore, to the terminal
classes "internal terminals" and "external terminals" are added two further classes,
namely "Refrypes" and "RefltemTypes."
• RefTypes cause the DocTypeInterpreter to read in a string similiar to the external

terminals, called the Reference, but this Reference is separated from the regular
contents and put into a special list structure if not yet existent. A pointer to the
actual position in the ContentsRelatedStructure is implemented here, too. If the
list already contains a RefItem for this Reference, the ContentsRelatedStructure
gets an additional pointer to the position of the RefItem. RefTypes are notated by
a '%', followed by a RefTypeIdentifier.

• RefItemTypes also cause the DocTypeInterpreter to read in a string which is added
to the special list. If this Reference is already registered in the list, it must be
refused with an error message. Otherwise, bidirected pointers are implemented be-
tween the corresponding positions in the list and in the ContentsRelatedStructure.
In addition, all References which already exist get pointers in the ContentsRelated-
Structure to the position of the Refltem. RefItemTypes are noted by a 'T', followed
by a RefItemTypeIdentifier.
Figure 7 shows different phases of the lists of the single RefTypes which can occur in

a DocTypeSpecification. The RefType A2 did not get any Item so far. The RefType
An has got a Reference called a, but there is no corresponding RefItem. RefType
A1 has got several References and RefItems. The Reference x occurs twice, but no
RefItem is there. On the other hand, there is a RefItem b, but no Reference to b.
Finally, the RefItem a is a complete reference list: There exists a bidirectional pointer
between the RefItem in the list and its position in the ContentsRelatedStructure and
from there a pointer to the position of the RefItem.

Now we change the definition of DocTypeSpec using these new types of terminals,
see figure 8. Note that the real difference to the previous specification is hidden
behind the scenes, because here ObjNames are no longer simple character strings but
references or Refltems, see the definition of ObjDef and Term.

This method solves the problem of multiple definitions of ObjNames, because Re-
fltems with the same type and identifier are forbidden! Furthermore, the completeness
of a DocTypeSpecification can be checked easily.

The new types of terminals make cross references an integral part of DocType-
Specifications, see figure 9. Note that the automatic generation of chapter numbers,
for example, does not fall into the domain of the DocTypeSpecifications, but of the
editor directives.

Refltems

t
~erype _~ I
Refltems ®

RefType A ~
Refltems

®

A1-Refltem
Name a
References

A l a - R e f e r e a e e
DocAdr ~. L _ _

A1 a-Reference

_ DoeAdr ~,,

Ala-Reference
Q DocAdr

An-Refltem®
Name a O

Aria-Reference

® DoeAdr ¢~

25

'" ' '" tL "

I I
References ® [[References T

Al~-Reference
DocAdr

Alz-Reference

® DoeAdr

Figure 7

____ :'°A----L'~ [!
!A1 b

~ A n a

~.A1 a

%AI

DoeTypeSpec ::= +ObjDef.

ObjDef ::= !ObjRef '::=' Sequence '.'.

Sequence ::= Term *(~u' Term).

Term ::= ?['*' I '+'] '? '] [%ObjRef I '1' #ALPHA
I '%' #ALPHA I '#' #EXTERN 1 '" #CHARS
[Alternative [' (' Sequence ') '] .

Alternative ::= ' [' Sequence *(' I ' Sequence) '] '.

F i g u r e 8

Because References are only stored by positions, not by contents, a change of a Ref-
Item immediately propagates to the corresponding References. Therefore, a Reference
to chapter 4 becomes a Reference to chapter 5 automatically, when the insertion of a
new chapter changes chapter 4 to chapter 5.

10. T h e c o n f ig ura t ion of the d o c u m e n t w o r k s t a t i o n

So far we have demonstrated how DocTypeSpecifications and ContentsRelatedStruc-
turedDocuments can be edited in a uniform way by interpreting DocTypeSpecifica-
tions. Therefore, the kernel of the document workstation is the DocTypeInterpreter.

26

Report ::=

Header ::=

Chapter ::=

Section ::=

GenTe~ ::=

Bibliography ::=

Bib Te~ ::=

Appendix ::=

Header +Chapter Bibliography Appendiz.

< not yet specified >.

IChapNo #Headin¢ GenTezt *Section.

ISee~Vo #Heading GenTe~ *Section.

*[#Te~ [%ChaplVo [%SectNo] %LitRe/].

#Heading *(fLitRef BibTe~).

< not y e t s p e c i f i e d >.

< not y e t s p e c i f i e d >.

Figure 9

The DocTypeInterpreter passes control to special functions if he meets an external ter-
minal. In general these special functions have two output streams, namely the screen
and a system buffer for document contents, and one input stream, namely the key-
board. But there may be special functions for the batch processing of input streams
as well, for example in order to translate a SGML-document into a ContentsRelated-
Structured one. Also other kinds of interaction with the user, like menue choices at
the alternative constructs are done by special functions; in the latter case the user's
input has to be transfered back to the DocTypeInterpreter.

The next problem is how to display the contents of the document beeing edited
on the screen in an adequate manner. For this purpose, the DocTypeInterpreter has
a DocType "EditorDirectives" at its disposal which corresponds to the DocType of
the document. These EditorDirectives provide for an adequate representation of such
differently structured documents like a short novel or an application form.

To get a formatted output of a document, the ContentsRelatedStructuredDocument
must be translated into a sequential data stream consisting of the text and interspersed
formatting commands. This job is done by the MarkupGenerator which reads the Doc-
TypeSpecification, the ContentsRelatedStructuredDocument and a MarkupDirective
which is, like the EditorDirectives, a ContentsRelatedStructuredDocument of a spe-
cial type again. These MarkupDirectives correspond to the type of the document that
has to be formatted and contains the information about the correspondence between
logical parts of the document and MarkupMaterial.

The complete configuration is shown in figure 10. More detailed information about
F~itorDirectives and MarkupDirectives can be found in [D].

11. T h e file se rve r

What will be the task of the file server within the document system?
First it has to manage all the different types of objects, namely DocTypeSpecifi-

cations, MarkupDirectives, ContentsRelatedStructuredDocuments, text streams with
formatting commands (TF_~ input files), and formatted documents (DVI-files) with all

2?

User

Editor-
Input

Editor-
Output

Document Editor

DokType
I n t e r p r e t e r

Special
Functions

DocType

Editor ~
/ / ~" ContentsRelated ~

t Structured |
~ Document / ~

Direkt ives) ~

1 l ~ r k u p G e n e r a t o r 1

F i g u r e 10

the relations between them. Furthermore, all the informations regarding one special
document have to be kept in a database. These informations are

• (short) name of the document
• document type
• author(s)
• title
• abstract
• dates of creation and updates
• date of release (for publishing)
• number of recalls
• notes
• a . s , o .

28

The system should support several users at the same time but separate their docu-
ment data areas. Users should be able to give authorization to other users for reading
and/or writing their files. One should be able to pass queries to the database - - even
from the outside via mail - - like the following
• which are the titles of all the available documents by author XYZ?
• which are the titles of all the documents published after DATE?
• which ist the abstract of document DOC?

The answers to these questions should be given by the system and sent back to the
questioner. Also formatted documents should be sent to interested readers.

An an important conceptual question had to be answered: Should the file server (or
the database system) know anything about the structure of DocTypes and documents?
We say "No." So the cooperation between file server and editor can be very loose.
The functions of the file server in this case will be essentially the following
• read document type
• write document type
• read structured document
• write structured document.

The file server can manage all types of objects but it cannot interpret them. In
fact, it doesn't need to worry about DocTypes because the design of our editor a
priori makes sure that all the documents are consistent with their types!

Therefore, the following realization can be considered. The objects are stored in
a hierarchical file system as it is possible with the UNIX operating system, and the
bibliographic data are stored in a relational database system. There will be a number
of globally defined DokTypeSpecifications, MarkupDirectives.. . which cannot be seen
by a user exept through the workstation.

Users can define and store their own DokTypeSpecifications, MarkupDirectives and
ContentRelatedStructuredDocuments with the help of the editor in some subdirec-
tories of their home directories. There the formatted documents and the DVI files
will be stored, too. The relation between DocTypeSpecifications, MarkupDirectives,
ContentsRelatedStructuredDocuments~ text files with formatting commands and for-
matted documents will be established by means of name conventions.

The user's home directory will contain a subdirectory, documents, were the database
files and the files for DocTypeSpecifications reside. For eac h type there will be a
subdirectory named with that type containing one .structures subdirectory~ several
MarkupDirectives for that type and for each MarkupDirective a further subdirectory
containing formatted documents and corresponding DVI files which are composed
according to DocTypeSpecifications in the .structures subdirectory. The organization
of the file system is shown in figure 11.

Updates to the file system and to the database will be made by the editor only.
Queries can be posed using the editor or special programs. There will be one special
user to whom queries can be posted via mail. These queries will then be collected, the
answers computed and mailed back automatically.

Acknowledgement
The authors wish to thank Roll Klein for his engagement. He read a first draft of this
paper and gave many useful hints which made it more understandable.

29

(home directory)
. user files

,el

g .structures
. documentl

• •

documentk

markupl.d

markupm.d

~markupl
. document 1.rex

document 1.dvi

documentk.tex
documentk.dvi

.documents

. doc.db
typel .d

typen.d

typen
. markupl.d

markupo.d

.markupm
. documentl. tex

documentl.dvi

documenth.tex
documenthAvi

Figure 11

30

12. Li tera ture

[B]

{BK]

[BHR]

[D]

[ECMA]
[EP]

IF]

[G]

[ISOI
[J]

[Ki]

[Eli

[K2]

[KS]
[LI

[M]

[MK]

H. Brown: From Text Formatter to Printer, in J.J.H. Miller (ed.): Protext I,
Boole Press, 1984

A. Briiggemann-Klein: TEX-Treiber ffir Lichtsatzanlagen, Institut fiir Ange-
wandte Informatik und Formale Beschreibungsveffahren, Universit~t Karls-
ruhe, interner Bericht, 1986

E. BSrger, G. Hasenj~ger, D. RSdding (eds.) Logic and Machines: Decision
Problems and Complexity, LNCS 171, Springer, 1984

P. Dolland: Konzeption eines Dokumentenarbeitsplatzsystems, Institut fiir
Angewandte Informatik und Formale Beschreibungsverfahren, Universit~t
Karlsruhe, interner Bericht, 1986

Standard ECMA- 101: Office Document Architecture, 1985

Elektronisches Publizieren technisch-wissenschaftllcher Texte, interner Be-
richt fiber ein Forschungs- und Entwicklungsvorhaben, gefSrdert durch die
Kommission der europ~ischen Gemeinschaften und das Bundesministerium
ffir Forschung und Technologic, 1985

R. Furuta, J. Scofield, A. Shaw: Document Formatting Systems: Surveys,
Concepts, Issues, Comp. Surv., Vol 14, No. 3, 1982

C.F. Goldfarb: A Generalized Approach to Document Markup, SIGPLAN
Notices of the ACM, 1981

ISO/DIS 8879

C. J£ger: Dokumentation zum Programm DVItoDIGI, Diplomarbeit, Insti-
tut ffir Angewandte Informatik und Formale Beschreibungsverfahren, Uni-
versit£t Karlsruhe, 1984

G.D. Kimura, A.C. Shaw, The Structure of Abstract Document Objects,
Comp. Sc. Dep. FR-35, University of Washington, Seattle, WA98195,
Technical Report No. 83-09-02~ 1983

D.E. Knuth: Semantics of Context-Free Languages, Math.Syst. Theory 2.2
and 5.1, 1968 and 1971

D.E. Knuth: TEX and METAFONT, New Directions in Typesetting, Dig-
ital Press, 1979

D.E. Knuth: The TEXbook, Addison-Wesley, 1984

L. Lamport: LATEX, User's Guide & Reference Manual, Addison-Wesley,
1986

N. Meyrowitz, A. van Dam: Interactive Editing Systems, Comp. Surv.,
Vol 14~ No. 3, 1982

P.A. MacKay: ~ ' s Coming of Age, in in J.J.H. Miller (ed.): Protext 1,
Boole Press, 1984

31

[PK]

[s]

[s h]

M.F. Plass, D.E. Knuth: Choosing Better Line Breaks, in J. Nievergelt,
G. Coray, J.-D. Nicoud, A.C. Shaw (eds.): Document Preparation Systems,
North Holland, 1982

J.L.A. Snepscheut: Trace Theory and VLSI Design, LNCS 200, Springer,
1985

S. Schuierer, Dokumentation zum Programm PXLtoDIGI, Institut fiir Ange-
wandte Informatik und FormaJe Beschrelbungsverfahren, Universit~t Kar~s-
ruhe, 1985

A N I M P R O V E D USER E N V I R O N M E N T FOR TEX*

Peehong Chen Michad A. Harrison
Jeffrey W. McCarrell John Coker Steve Procter

Computer Science Division
University of California

Berkeley, CA 94720, USA

Abstract

This paper describes the enhancements we have made at Berkeley to the TEX
environment. The goal of the enhancements is to shorten the edit-compile-debug
cycle in preparing TEX documents. An important step in cutting down debugging
time is the development of a DVI previewer on a workstation with a high resolution
bit-mapped display. Yet another approach we took is the integration of TEX with
a powerful display-oriented editor whereby the editing, compiling, and certain
pre- or postprocessing of a document may be automated. We present some of the
important results of our work in this paper with a general critique on TEX that
underscores our motivations.

1. Introduction

This paper is a report on the improvements we have made at Berkeley to the
TEX document preparation environment. During the past few years, TEX [8] has
evolved at Berkeley as an alternative to the standard UNIX text processing sys-
tem t r o l l [10] and its preprocessors. We enjoy doing our writings in TEX because
it has a number of advantages over other systems, some of which we see are its ex-
tensibility (macros), mathematics, and the high quality output. Unfortunately, at
the same time we have also discovered some disadvantages of and inconveniences
in using TEX. The fact that TEX is batch-oriented often makes it very expensive
to reprocess a document with only few changes. Another criticism we consider
valid is its lack of graphics support, although a "hook" is available (\ s p e c i a l)
and many proposals have been made over the years in the public forum such as
the t e x - h a x mailing list.

* This work has been sponsored by the U.S. National Science Foundation under
Grant MCS-8311787 and by the U.S. Defense Advanced Research Projects Agency
(DoD), ARPA Order No. 4871, monitored by Naval Electronic Systems Com-
mand~ under Contract No. N00039-84-C-0089. Additional support was provided
by the State of California MICRO program under grant number 532422-19900.

33

In 1984, a team was formed at Berkeley to conduct research in document prepa-
ration systems, with the improvement of TEX as our primary goal. The work we
have done in the project comprises two phases. In phase one we took the obvious
approach to make enhancements by integrating TEX and its accessory programs
with an interactive editor. Furthermore, on our workstations we developed a DVI
previewer and other TEX-related tools to shorten the edit-compile-debug cycle.
In the second phase, which is still under development, we are taking a more am-
bitious approach that at tempts to design and build a brand new system based on
TEX. The idea is to stick with TEX's source language including its macro facility
and formatting algorithms but, in addition, making it incremental and more user
friendly. Moreover, editing tables, graphics, and raster images will be an integral
part of the system. We call this new environment Visually-ORiented TEX, or
VORTE X •

The two approaches are actually interrelated. The first phase started earlier
with porting TEX to the SUN workstation and developing a DVI previewer under
its window system, followed by integrating all TEX-related software in a display-
oriented editor. By now it has produced a number of programs which are useful
in and of themselves. They have also become important prototypes and special
subsystems for the ultimate VORTE X environment.

This paper is concerned with the results produced by phase one of our project,
as the objectives and design of the \~)RTE X system itself is discussed elsewhere [4].
We first give a general critique on TEX from the user's point of view in the
next section, pointing out its strengths and weaknesses as compared with other
systems. This also serves as a background for later sections which discuss some
of the important enhancements we have done.

Section 3 describes the functionalities and technical aspects of dvitool, the
DVI previewer we have been developing on the SUN workstation. Working with
a window-based system, one can have a text editor operating on a source file,
also have available a console or shell window in which to run additiona~ jobs,
and have a third window displaying the formatted output all at the same time.
Our program for previewing DVI files is called d v i t o o l which supports keystroke
commands, pop-up menus, scroll bars, and other standard user interface in a
window paradigm.

Section 4 discusses the TEX integration with GNU Emacs [13]. For the t~me
being, most of us use Emacs as our editor-of-choice in preparing source files.
Emacs allows one to customize it by writing programs in a Lisp dialect. This turns
out to be an extremely powerful language, and we have constructed very large
programs which aid in the use of TEX. In addition to doing obvious things such
as matching braces automatically, the user can receive a great deal of assistance
in working with bibliographies. It is possible to avoid the use of multiple passes
with I_$TEX/BIBTEX [9,11] and a great many other important facilities can be
made available through the use of our system. Discussions in this section are
concentrated on high-level abstractions of the design and its basic functionalities.

34

Finally some concluding remarks are given in Section 5 on our experience with
building this improved TEX environment. Notes on what we expect to do in the
future, especially with VORTE X , wilt also be mentioned.

2. A Critique

We have chosen to base the VORTE X system on TEX for a number of reasons
which center around TEX's unique advantages. One of these is the concept of a
device independent file which gives the same results on different output devices,
and the only limitation is the resolution of the device. We also are committed
to getting the highest possible quality from our systems. TEX has outstanding
algorithms for dealing with the basic problems of computerized typesetting. In
particular, the line breaking algorithm is excellent and the hyphenation algorithm
gives impressive results for relatively small table sizes.

TEX's greatest strength is its handling of mathematics. It is in processing
mathematics that the advantages of a source-based system such as TEX become
very noticeable. In a seminar given at Berkeley, students were asked to typeset
a page of complicated mathematics from a textbook. This was not terribly diffi-
cult to do using TEX. On the other hand, with Xerox Dandelions available some
students attempted to set the same page using the processing facilities available
as part of the STAR system [1]. It took much longer, and the results were very
disappointing in terms of appearance. This has lead us to believe that typeset-
ting mathematics without a source language is in general a painful task. Even
with the notion of plagiarizing, (i.e. by copying template formulas from what's
available in system's database), which is supported by some WYSIWYG (what-
you-see-is-what-you-get) systems like LARA [6], the potential tampering by the
user will still put its final quality in question. The output produced by TEX on
mathematics exceeds the levels of all but the best hand compositors, and it can
be truly said to be an "expert system" in the production of mathematics.

Unfortunately, TEX has weaknesses as well. There is no graphic facility what-
soever. The system is oriented to batch operating systems. TEX has facilities
for setting tables, but these are primitive, and the construction of tables in TEX
is an enormously difficult and time-consuming chore. The situation is somewhat
ameliorated with ISTEX [9] which makes producing tables almost as easy as using
tbl and troff.

TEX achieves its flexibility by being a macro-based system. That is, the user
writes macros to accomplish what one wishes to do. Such examples of course are
the p l a i n package and the I~TEX macro package. There is a very poor human
interface in the macro system, and it requires a high degree of wizardry to use it.

While the source based systems have been impressive in the quality of their
output for difficult typesetting jobs like mathematics, the situation is reversed
with the WYSIWYG editors. Here excellent human interfaces have been devel-
oped. Users find it easy to learn the systems for simple word processing or even
for the construction of graphics and the preparation of tables. The software for

35

the Macintosh [7] is especially noteworthy in this regard. On the other hand,
these systems cannot do mathematics well and they do not generally produce
high quality results comparable to those obtainable from TEX.

3. TEX wi thout Paper: Dvi too l

Dvitool , a TEX output previewer running on the SUN workstation, is an integral
part of the Berkeley TEX environment. Our primary goal for d v i t o o l was to
provide a means to view the DVI representation of a TEX file without printing it.
In our large community, printing takes a long time and is particularly frustrating
when debugging a macro. The section describes d v i t o o l ' s basic functionalities,
its user interface, and the future directions.

3.1 Funct ional i t ies

One of the first things d v i t o o l does when executed is look for a user spe-
cific customization file. The customization file describes initialization parameters
which are mostly window system specific, for example, the placement and size of
the window d v i t o o l runs in. After d v i t o o l has started up, the image it presents
of the DVI page is 1.45 times the size of an 8.5 by 11 inch sheet of paper. This
scale factor means that when d v i t o o l is made as big as the screen allows, the full
width of the page and about 60% of its height will be visible. The scale factor
is largely historical, but it is also practical. It turns out that at our screen reso-
lution (80 dots per inch) that 1.45 times normal size is close to the lower bound
of usability. Any smaller and the fonts would be illegible. Even at 1.45 times
normal, dvitool's fonts cannot be called satisfactory.

Once the page is painted, the user can scroll an arbitrary amount either verti-
cally or horizontally. The default action is to scroll 1/3 of the window size. There
are also commands to position on any edge of the page, so one keystroke positions
the bottom of the page at the bottom of the window. The complete DVI page is
read in at one time, so that new views of the same page are instantaneous.

The user can move back and forth across pages as well. Since a new DVI
page must be read and painted, there is a short delay, typically 4 seconds in our
environment. Pages are cached, however, so that once a page has been viewed,
viewing it again is nearly instantaneous. The memory penalty for page caching is
about 6K bytes per page, which is not too prohibitive on our workstations with
4 megabytes of memory. The user can limit the number of cached pages and
dvitool internally sets the limit whenever it cannot obtain enough memory to
cache another page.

"Wildcard" searches have been implemented on any of TEX's ten \count vari-
ables. These are not full regular expressions; they just match any field so the user
can go to the first page in chapter 4, for example. Commands also exist to view
the first and last pages of the file. The movement commands are reminiscent of a
text editor.

36

We've also implemented a global magnification scheme in dvi tool . TEX's
\ m a g n i f i c a t i o n macro magnifies the size of individual letters on the page, but
keeps \ h s i z e and \ v s i z e in true dimensions so the pages always come out 8.5
by 11 inches. Dvitool 's magnification, on the other hand, is global. It simply
magnifies the entire page. There are 6 steps available, corresponding to TEX's
6 magsteps. This feature is particularly nice for aging eyes. We implemented
discrete steps of magnification rather than a continuous spectrum because new
magnifications require new fonts.

Dvitool can also report information about the DVI image, though this ability
isn't quite as useful as it sounds. DVI files were designed to be a compact repre-
sentation of a typeset page. There isn't a lot of extraneous information in them,
so there isn't much that dv i t oo l can report. About the most useful feature is
that the user can select a character with the mouse and ask what font that char-
acter is set in. Even this is of limited usefulness, however, because the user has
to correlate the font name in the TEX document which may have gone through
arbitrary macro expansion to the system's name of the font that dvitool knows
about. For example, TEX users in our environment have to know that TEX uses
amit t for italic fonts. ISTEX users l~ave to correlate amit t with emphasized text
as well.

A companion program for dv i t oo l we've developed is called texdvi . As the
name implies, in one step TEX is executed and then the output is previewed using
dvi tool . Texdvi is smart enough to start up a new dv i t oo l or to signal a running
dv i too l to preview the newly formatted output. However, dv i too t will not be
invoked if the DVI file was not changed. In addition, if there were errors during
the TEX job, t exdvi asks the user if he still wants to preview the potentially
flawed DVI file. The new DVI image displays the text at exactly the point that
was displayed earlier. This is very useful for debugging because of automatic
repositioning. There are similar mechanisms for working with I_$TEX and SIJTEX
(i.e. l a t e x d v i and s l i t e x d v i) . In fact the program is set up in a way that with
the formatter replaced by any TEX dialect, say FooTEX , the program footexdvi
only has to be a symbolic link to texdvi .

3.2 User Interface

The user interface to dv i too l has undergone many changes. Our window en-
vironment offers many ways to invoke commands. We finally decided on two:
keystrokes and menus. The reason is that inexperienced users of dv i t oo l expect
to use the mouse to perform commands in a window environment, while advanced
users find the menus cumbersome. We provide both so that dv i t oo l is both easy
to learn for the novice and responsive to the expert. We provide clues to help
the user graduate from novice to expert level. For example, all of the menu com-
mands also contain the matching keystroke commands as a hint to the user. We
also provide an on-line help facility which is itself a DVI file.

We rejected having "buttons" as our user interface. Buttons can be thought of

37

as menus which are statically displayed. They are fixed areas inside the window
that the user points to and clicks on with the mouse to invoke a command. The
standard placement for buttons is a row of them either across the top or down
one side of the window. The idea was rejected for two reasons: we wanted to
devote as much screen real estate as possible to displaying the DVI page, and we
didn't want to force the user to be continually switching from the keyboard to
the mouse.

As part of d v i t o o l ' s customization facility, keystroke commands can be rede-
fined by the user to look like the key bindings of his/her favorite text editor. This
feature is particularly important because users frequently switch from the editor
to d v i t o o l and back.

3.3 Future Direct ions

Dvi too l was developed on the SUN workstation and runs under their propri-
etary window system [2]. Some care has been taken to isolate the system de-
pendent parts of the code, but any program which must deal intimately with a
non-standardized graphics interface is inherently not very portable. Dvi too l is
typical in this respect. We expect to begin work on a port to the X window
system [5] soon.

Over time, the the user interface to d v i t o o l has become more editor-like. Since
it is possible, and indeed desirable, to have both your text editor and d v i t o o l on
the screen at the same time, we've tried to make them as homogeneous as possible.
Planned additions to d v i t o o l include negative magnification (shrinking) and a
word search facility. Ligatures present problems for the word search routines.
At the DVI level, ligatures such as the two characters "if" are printed as a single
character. Certainly we could create a translation table at compile time to do that
mapping, but that solution is necessarily dependent on external and potentially
changeable information.

Another problem is how to search for math text. HOW would the user tell
d v i t o o l to look for x3, for example? The obvious solution of having d v i t o o l
recognize the TEX syntax for that expression implies that d v i t o o l would have to
be able to parse the TEX language which is a task far beyond its scope.

4. Integrat ing TEX w i t h Emacs

One way to enhance the TEX environment is to customize a display-oriented text
editor whereby the editing, compiling, and certain preprocessing or postprocess-
ing of a document may be automated. Since in general a modern display editor is
interactive, this approach turns out to be a remedy for TEX's lack of interaction
with the user. Our editor of choice is GNU Emacs [13] which is the latest imple-
mentation in the Emacs family of editors [12]. GNU Emacs supports Emacs Lisp
(or ELisp) in both interpreted and compiled forms. ELisp is very close to a full
Lisp implementation: general list and attribute processing are available as part
of some 900 system primitives and functions for various editing purposes.

38

The enhancements we've made to TEX in Emacs are basically two macro pack-
ages: TEX-mode and BIBTEX-mode [3]. The combined system is about 6,000 lines
of ELisp code which is split into eight different files according to functionalities.
Only the most essential parts are loaded initially; other files are loaded on demand.
The first package, TEX-mode, is an aid to editing, spelling checking, compiling,
previewing, and printing TEX and ISTEX/SIJTEX [9] documents. BIPTEX-mode ,
on the other hand, is an interface to editing BIBTEX [9,11] databases. Perhaps
more importantly, the two modes are integrated to yield a very nice bibliography
system for both types of documents.

A major focus of our design is a clean and uniform abstraction for both docu-
ment structure and desired functionalities. The document structure refers to the
types of objects and their interrelationships in a document that must be made
explicit to the user. Functionalities are the possible operations which may be per-
formed on certain objects. The two are bridged together by a set of commands
which is uniform across the board in terms of naming and key bindings. Because
there are so many commands in the system, the hope is to make them not only
useful but easy to remember as well.

4.1 D o c u m e n t S t r u c t u r e

At the source level, TEX-mode makes the distinction between a document and a
file by acknowledging that a TEX or I~TEX document may involve multiple files
connected by \ i n p u t or \ i n c l u d e commands. TEX-mode views a document as a
tree of files with edges being the connecting commands. The root of a document
tree is called the master file. Operations involving the entire document must be
started from the master file. The processing sequence is the preorder traversal of
the tree. In TEX-mode, each individual file has a link to the master to assure any
global commands initiated in its buffer will always start from the master. The
link to master also makes it possible to separately compile any component file
or a part of it. The technique used in 7~X-mode to do separate compilation is
discussed in Section 4.2.4.

The next level of abstraction is a file, or when loaded in Emacs, a buffer.
Objects of even smaller granularities include regions and words. A region is a
piece of text, including any white space, bounded by a marker and the current
cursor position (i.e. point in GNU Emacs). A word in TEX-mode is a piece of
text with no white space in it.

At the output DVI level, the distinction is less complex. The only abstractions
are the DVI file as a whole and subranges of one extracted out as another file.
Normally DVI files themselves are not visited in Emacs. Therefore in a buffer
bound to the TEX source foo . tex, the implicit operand for operations such as
preview and print is f o o . d v i instead of f o o . t e x . With the abstractions, it is
possible to preview or print a DVI file partially as welt as in its entirety.

Furthermore, TF~-mode maintains the notion of document type which may be
either TE X, ~-TEX , or SLiTEX in our current version. The type information is

39

needed when the user tries to execute operations involving programs which are
type-specific, such as the formatter (i.e. rex, l a tex , or s l i t e x) and the document
filter (i.e. de tex or de la tex) . However, such information is implicit to the user
except for the first time - - once specified it will be saved as a comment line in
the document to be read by later invocations. In other words, from the user's
point of view, operations in TEX-mode are generic. For instance, an operation is
known as format at all times instead of as tex, la tex , or s l i t e x under different
situations. TEX-mode does operator overloading implicitly by consulting the type
information.

4.2 Functionalities

Operations in our enhanced TEX environment fall into one the following cate-
gories: (1) delimiter matching, (2) bibliography processing, (3) spelling checking,
and (4) compiling-debugging-previewing-printing. All four are defined in ~ -
mode with the exception that the second also relies on BIBTEX-mode.

4.2.1 Delimiter Matching

A rather complete delimiter matching mechanism is implemented in TEX-mode.
First, automatic delimiter matching applies to a pair of parentheses, brackets, or
braces (i.e. (. . .) , [. . .] , or { . . . }) . That is, whenever a self-inserting closing
delimiter (i . e .) ,], or }) is typed, the cursor moves momentarily to the location
of the matching opening delimiter (i.e. (, [, or {). TEX-mode gets this for free
simply by modifying Emacs' syntax table entries.

The matching of other delimiters is less straightforward. Matching delimiters
such as quotes (i.e. ' . . . ' , " . . . " , and " . . . ") and TEX dollar signs ($ $)
cannot be done automatically by syntax entry modifications. For example, the
symbol ' " is the right quote as well as the apostrophe. Modifying syntax entries
in the normal way is inappropriate because we don't want the cursor to bounce
in the case of apostrophes. Matching double quotes (" . . . ") and TEX dollar signs
($. . . $) is even harder because the opening and closing delimiters are identical in
those situations.

Semi-automatic Delimiters

TEX-mode introduces the notion of semi-automatic matching. To get semi-
automatic delimiters inserted, one types some special commands and the text
between a bound and the current cursor position will be enclosed by a pair of
delimiters. The bound may be explicit or implicit. For the first case, which is
called zone matching in TEX-mode , the user consciously sets a zone marker and
closes it at the other end by typing the command that corresponds to the delim-
iters wanted. For the second case, an implicit bound refers to the white space
before or after a word. TEX-mode calls this scheme word matching . Symbols
like ' . . . ', " . . . ' ', $. . . $, and $ $. . . $$ as well as groupings for fonts and boxes
such as {k i t . . . \ / } , { \ t t . . . }, \ hbox{ . . . }, and \vbox{ . . . } are all built-in

40

semi-automatic delimiters in TEX-mode. For instance, typing the command C-e i
(t ex-word- i t) will automatically enclose the previous word in (k i t . . . \ /} , with
• . . being the word.

Automatic Delimiters

Matching identical opening and closing delimiters is a difficult task. The situation
is further complicated by the TEX dollar sign because a pair of single dollar signs
($. . . $) denotes math mode in TEX whereas a pair of double dollar signs ($$. . . $$)
means display math mode. A correct mechanism not only has to know which self-
inserting $ or $$ is an opening delimiter and which is a closing one but also must
be clever enough so that the second $ in $$ does not match the one preceding it.
Furthermore, a dollar sign may be escaped (i.e. \$) in TEX which must be treated
as an ordinary symbol rather than a math mode delimiter. TEX-mode's dollar
sign matching mechanism is designed to handle all cases correctly. A similar but
less complex mechanism applies to the matching of double quotes (' . . . ') .

I~TF~ Delimiters

One of the most commonly used commands in L~TEX is a pair of \beg in and
\end which is normally used to embrace a large piece of text under a certain
environment. Environments can be nested in the obvious way, just as in any
block-structured language. With several levels of environments in place, proper
indentations become essential to readability.

TEX-mode has a facility that opens and closes DTEX environments automat-
ically with proper indentations inserted. For example, with one command, you
can get

\b egin(enumerat e}
|

\end(enumerate)

where | denotes the current cursor position. Most ~TEX environments are pre-
defined and there is an operator which prompts you for an environment and its
associated arguments interactively.

Customization
All delimiter matching schemes mentioned above can be customized. A new pair
of delimiters may be defined statically by putting the information in Emacs' profile
(. emacs) to have it available for every TEX-mode session. Alternatively, the user
can enter the information interactively to TEX-mode so that a new delimiter pair
is bound for only one particular Emacs session.

4.2.2 Bibliography Processing
BIBTEX is a bibliography preprocessor for ~TEX documents. Under the IATEX
paradigm, one makes citations in the source by referring to entries defined in

41

bibliography databases. A BIBTEX database is a file with the name suffix '. b ib '
which contains one or more bibliography entries. To get the final output, the
user first runs l a t e x on the source to produce some reference information which
is passed to b i b t e x to generate the actual bibliography. A second run of l a t e x
looks up the bibliography and produces cross reference information based upon
which the last l a t e x does the actual substitutions.

TEX-mode makes it possible for BIBTEX to work on plain TEX documents as
well. It bypasses the first l a t e x and invokes b i b t e x directly. It works with
multiple files involved in a document by recursively examining \ i n p u t commands
in plain TEX files and \ i n c l u d e o n l y , \ i n c l u d e , and \ i n p u t commands in L~FEX
files. Furthermore, it prompts you for corrections at the places where citation
errors are found. In addition, a database lookup facility is available for making
citations. The implications are:
1. The same m~han i sm not only works for L~TEX documents which BIBTEX was

originally designed for but for plain TEX documents as well.
2. To get the final I~TEX output, the user only has to invoke one or two l a t ex ' s

manually - - depending on non-citation symbolic references being present.. To
get the final TEX output , only a single run of t ex will suffice. This is due
to the automatic invocation of b ib tex , the error correcting facility, and the
automatic substitution mechanism.

3. Due to the lookup facility, the user does not have to memorize or type in the
exact entry names in order to make citations. The system prompts you one
by one the matching entries found in the specified bibliography database. The
selected entry will be interpolated into the source automatically.

In our environment there is a powerful IBM 3081 mainframe which we often use
for large jobs. Currently it supports TEX and L~TEX but not BIBTEX. However,
using our bibliography system in Emacs, we are able to get all bibliographical
references resolved in our local machine (VAX/UNIX), send the document as a
single file to the 3081 computer over the network, execute rex or l a t e x there, and
get the resulting DVI file back. In fact, a fair amount of work needs to be done
before a . t e x file is sent to the remote machine. For instance, the conversions
between special characters used in the two systems and between stream-based
files (UNIX) and record-based files (IBM 3081 takes 80 columns per line) mu~,~t all
be realized beforehand. It would be impossible to take advantage of the remote
machine's fast speed if our preprocessing facility were not available.

Finally, bibliography database files can be manipulated using BIBTEX-mode.
It has all fourteen BIBTEX bibliography entry types predefined so that to insert a
new entry the user only has to specify its type. A skeleton instance of the specified
type will be generated automatically with the various fields left empty for the user
to fill in. A set of supporting functions such as scroll, field copy, entry duplicate,
..., etc. is provided to facilitate this content-filling process. Other major features
of the mode include a facility to make a draft bibliography for debugging and
previewing purposes and an extended abbreviation mechanism that allows one to

42

abbreviate chunks of text and to browse abbreviations defined in any . b ib files.

4.2.3 Spelling Checking

The TEX-mode spelling interface allows one to check the spelling for a word,
a region, a buffer, or the entire document. It is specially tailored to TEX and
I~TEX documents: keywords and commands of TEX will first be filtered out by a
program called de t ex and those of ISTEX by de la tex , before being sent to the
system's spelling program. The user will be able to scroll the list of misspelled
words and make corrections, including using a dictionary lookup facility. To avoid
screen redisplay overhead, searching under low speed connections (< 2400 baud)
is implemented for scrolling and replacing any misspelled words in the buffer.
That is, if an instance is not visible in the current window, only the line containing
it is shown in a tiny window at the bot tom of the screen.

4.2.4 Compile-Debug-Preview-Print

A number of TEX related programs can be invoked from TEX-mode. These exter-
nal programs are executed uniformly in Emacs' inferior shell process. The generic
operators are format, display, view, and print. The first two are overloaded based
on the document type. The display operator is a pipeline of formatting followed
by previewing (i.e. t exdv i , l a t e x d v i , or s l i t e x d v i) . The view operator is
bound to a previewer such as d v i t o o l described in the Section 3. The other two
operators are self-explanatory.

The notion of master file plays an important role here. Both format and display
operate on either the entire document, a buffer, or a region in buffer. A document
preamble and similarly a postamble can be associated with the master to contain
the document 's global context. To separately compile a component file or its
subregion, a mechanism is available in ~X-mode that includes in a temporary
file the document 's preamble and postamble with the selected text inserted in
between. The system will then run format or display on this temporary file. This
technique is primarily for debugging purposes as there is no provision for linking
separately generated DVI files into one big DVI file. However, for users wanting
only a quick look at a relatively small portion of a document in the debugging
phase, this automatic facility turns out to be very valuable.

A DVI file can be previewed or printed in its entirety. TEX-mode can also
invoke the program d v i s e l e c t so that arbitrary pages within a DVI file may
be extracted and only these selected pages will be previewed or printed. This is
another useful tool for avoiding unnecessary work in a batch oriented environment
like TE X.

Another support for debugging is a mechanism which automatically positions
the cursor to the line and column where the error occurs. Also available are little
tricks like commenting out a region by a single command and recovering it by
another command.

43

4.3 C o m m a n d s

The bridge between objects and their corresponding operations is the set of com-
mands available to the user. The central issue here is the uniformity in both
naming and key bindings.

By and large, the two modes obey the naming convention that a function name
consists of three parts: prefix (tex- or b ib tex-) , generic operator, and abstract
object. The corresponding key binding will be the C-c prefix, followed by C-
and the first letter of the middle part, then the first letter of the last part. One
example is the TEX-mode function t ex-forraat-document with its corresponding
key binding being C-c C-fd. BIBTEX-mode deals with a simpler set of objects such
as bibliography entries and their component fields. The function to duplicate
the previous entry, for instance, is called b i b t ex -dup -p rev ious - en t ry which is
bound to C-c C-d p. There are variations to this convention due to the constraint
of limited keys, but all converge to the central idea of uniformity.

5. C o n c l u s i o n s

The environment described in this paper has proved to be useful to users of TF_/X
and TEX-like programs. With d v i t o o l and the various editing functions in TF3X-
mode, for example, the edit-compile-debug cycle has been cut down drastically,
besides saving on paper expenditure. The abstract document structure whiLch
TEX-mode supports and the special techniques it uses have made possible a sim-
ple form of separate compilation, which also contributes to avoiding unnecessary
processing overhead. Furthermore, the bibliography subsystem based on the two
Emacs modes has become a valuable tool in writing TEX and ~TEX documents.

Other subsystems that have been built but not mentioned in this paper include
a bitmap editor for the TEX PXL and GF font formats. This program is w~ry
useful for tuning special fonts such as digitized raster images. We have also written
a DVI driver for the Xerox Raven laser printer and a font converter from PXL
to the Xerox Interpress format. One of the things we have not added yet to the
system, but will do so soon, is the automatic construction of indices, etc.

Even though this enhanced Berkeley TEX environment is far from being ideal - -
graphics is still absent and table writing is still inconvenient - - among many other
missing but desirable features, we expect to have all of this functionality available
in the final VORTE X system. Our experience with the subsystems built so far has
been of significant value to the design of VORTEX. We distribute this software
from Berkeley, and it is currently running in approximately 30 universities and
industrial sites.

44

6. References

[1] 8010 STAR Information System Reference Library, Release 4.2. Xerox Office
Systems, E1 Segundo, California, 1984.

[2] Sun View Programmer's Guide, Release A of 17. Sun Microsystems, Mountain
View, California, February 1986.

[3] Peehong Chen. GNU Emacs TEX-mode and BIBTEX-mode. Technical Report,
Computer Science Division, University of California at Berkeley. To appear.

[4] Peehong Chen, John Coker, Michael A. Harrison, Jeffrey W. McCarrell, and
Steve Procter. The VORTEX document preparation environment. Submitted
for publication.

[5] Jim Gettys and Ron Newman. Xlib - C Language X Interface: Version 9.
MIT Project Athena, Cambridge, Massachusetts, 1985.

[6] J. Gutknecht. Concepts of the text editor Lara. CACM, 28(9):942-960,
September 1985.

[7] L. Johnson. Macintosh Mac Write Manual. Apple Computer, Inc., Cupertino,
California, 1983.

[8] Donald E. Knuth. The TEX Book. Addison-Wesley Publishing Co., 1984.

[9] Leslie Lamport. I~TEX: A Document Preparation System. User's Guide and
Reference Manual. Addison-Wesley Publishing Co., 1986.

[10] Joseph F. Ossanna. groff/Troff User's Manual. Computer Science Technical
Report 54, AT&T Bell Laboratories, Murray Hill, New Jersey, October 1976.

[11] Oren Patashnik. BIBTEXing. Computer Science Department, Stanford Uni-
versity, Stanford, California, March 1985.

[12] Richard M. Staltman. EMACS: the extensible, customizabte self-documenting
display editor. In Proceedings of ACM SIGPLAN//SIGOA Symposium on Text
Manipulation, pages 147-156, Portland, Oregan, June 8-10 1981.

[13] Richard M. Stallman. GNU Emacs Manual. Free Software Foudation, Cam-
bridge, Massachusetts, second edition, March 1986.

THE VORTE X D O C U M E N T P R E P A R A T I O N E N V I R O N M E N T *

Peehong Chen John Coker Michael A. Harrison

Jeffrey W. McCarrell Steve Procter

Computer Science Division
University of California

Berkeley, CA 94720, USA

Abstract

VOI:~TEX (Visually-ORiented TEX) is a TEX-based document preparation environ-
ment being developed at Berkeley. The system will have three major features:
(1) Both source and target representations of a document will be maintained and
displayed. Changes made to one representation will propagate to the other auto-
matically. (2) It will reformat and redisplay a document incrementally. (3) A high
degree of interactivity and a good user interface will be provided. Our approach
is to derive an internal representation based on which transformations between
source and target can be realized efficiently. This paper describes the objectives
and motivations of the project. An outline of the internM representation as well
as VORTEX's basic functionalities and user interface is presented.

1. Introduct ion

During the last ten years, there has been a significant amount of work done in text
processing and document preparation systems. Detailed classifications of these
systems can be found in [7]. For our purposes, it is sufficient to consider two
different series of developments. In one, which we call the source-based model,
documents are prepared with interspersed editing commands. The system is
then run, usually in batch mode, and the results observed. Typical processors
of this type include n r o f f / t r o f f [15] and the associated UNIX subsystems and
preprocessors. This group also includes Scribe [17], which has one of the nicest
user interfaces of this type of system. The high point of this group in terms of
output quality has been the TEX [13] family of processors.

* This work has been sponsored by the U.S. National Science Foundation under
Grant MCS-8311787 and by the U.S. Defense Advanced Research Projects Agency
(DoD), ARPA Order No. 4871, monitored by Naval Electronic Systems Com-
mand, under Contract No. N00039-84-C-0089. Additional support was provided
by the State of California MICRO program under grant number 532422-19900.

46

A second major development has been the direct manipulation model, which
includes processors of the so-called "what-you-see-is-what-you-get" (WYSIWYG)
type. This started with the Bravo editor [14], and subsequent systems such as
Etude [11], Tioga [19], and Lara [10] have been developed at various research
institutions. Also, with personal workstations becoming common place, a number
of commercial WYSIWYG systems like STAR [1], MacWrite [12], and Interleaf [2]
have already penetrated many homes and offices. One thing common to the
all these systems is the absence of a source language for describing documents.
Everything is specified on-line by invoking menus and buttons so that a large
number of details are hidden.

Each of these trains of development has important advantages and disadvan-
tages. By and large, the output quality produced by source-based systems is
higher than that by WYSIWYG editors. This is because most source compilers
are batch-oriented, which means the formatting can be better optimized. Direct
manipulation systems are limited, in this regard, by certain constraints in terms
of response time. However, being batch-oriented often makes source-based sys-
terns poor in their user interface and expensive in the processing time. It is in
the area of user interfaces that WYSIWYG systems seem preferable.

VORTE X is an at tempt to combine the best features of both paradigms. We
believe the ability to deal with multiple representations of the same document is
extremely important. There are simply some aspects of document preparation
which are much better dealt with at the source level, while others are better dealt
with by direct manipulations. More precisely, the major focuses of VORTE X are
the following:
• Multiple Representations. Both source and target representations of a docu-

ment will be maintained and presented. The source representation refers to a
TEX document in its original unformatted form whereas the target representa-
tion means its formatted result. The user can edit both representations using
a text editor and what we call a proof editor, respectively. Changes made to
one representation will propagate to the other automatically.

• Incremental Processing. The system will reformat a document and redisplay
it on the screen incrementally. That is, only the part of the document or the
subregion of the screen that 's affected by recent changes will be reprocessed.

• User Interface. The system will be running on, but not restricted to, a work-
station with a high resolution bit-mapped display. It will have a high degree of
interaction with the user. Unnecessary details will be hidden especially in the
proof editor whose major usage is to modify document appearance. The user
interface is so designed that in the case where only conventional terminals are
available, the system can still be used as an incremental TEX compiler.

• TEX Compatibility. Given a TEX file, VORTEX can produce a DVI file which
generates the same printed image as if a standard version of TE X had been
run. This DVI file is "equivalent to a standard DVI file modulo \ spec±a l
commands".

47

• Composite Objects. The system will support not only text, math, and tables,
but also non-textual objects such as graphics and raster images. There will be
a high-level tool for each special object and all special tools will integrate with
the base system coherently.

The rest of this paper is a sketch of some considerations we have made to realize
these objectives.

2. A r c h i t e c t u r e

The VORTE X system will be an integration of a number of modules sharing a
common internal representation (IR) for the document. Some of the important
modules include a text editor, a formatter, a proof editor, and a DVI generator.
Each of these modules performs as least one transformation from one representa-
tion of the document to another. The IR comprises three parts, call them IRs,
IRT, and IRI, which correspond to the internal representations of the source,
target, and some intermediate information, respectively.

The display of VORTE X in a window-based system will have at least three
windows: text window displaying the source, proof window displaying the target,
and message window for receiving input or displaying messages. Different files of
a document can be bound to separate buffers displayed in different subwindows as
a tiled partition of the text window. In a conventional terminal display, there will
only be a text window and a message window; the proof window will be missing
and its editor will be disabled.

The text editor is responsible for maintaining a window which displays the
document in its unformatted source form. It performs the mapping from the
images displayed on the text window to IR8, its internal representation, and vice
versa. In addition to performing standard text editing operations such as insert
and delete, it also invokes the formatter upon the user's request. The formatter
is a mapping from a source file to IR (initial round), or from IR to IR I, a
reorganization of IR (later rounds).

After this transformation, the proof editor will be invoked which maps IRT to
the physical screen positions of the images. The primary purpose of this editor
is maintaining a window which displays the document in its target (formatted)
form. Hence it also performs the mapping from screen positions to IRs, but not
IRT. This is because modifications to the document's output appearance must
be translated to the corresponding TEX code in the source representation, as
represented by IRs. The correct structure for IRT will only be generated by the
formatter. Finally the DVt generator is a mapping from IRT to TEX's standard
output format, the DVI representation.

There will be some special editors for non-textual objects such as tables, graph-
ics, and raster images. Specific argument syntax will be defined for TEX's "hook",
the \ s p e c ± a l command, so that particular objects will always be manipulated by
their corresponding editors. These will be direct manipulation editors which are
invoked whenever their respective objects are selected in the base editors.

48

VORTEX's basic flow of control starts from the formatter, it constructs or reor-
ganizes IR until the selected output page is encountered. Then IRT is mapped
to the screen as formatted images and the two base editors are activated. As
editing goes along in both windows, changes will always be reflected in the text
window and I R s simultaneously. If any of the special objects is selected, its cor-
responding editor will be invoked. At any given time, the two windows may or
may be synchronized in terms of the images displayed. Explicit commands must
be given in either window to make the two representations and their respective
screen images synchronized, which may involve some scrolling, or even reformat-
ting. If reformatting is required, the formatter is invoked and the whole process
starts over again.

3. Internal Representat ion

There are two major problems which M:)RTEX's IR needs to face. One is the mul-
tiple representation problem [16]; our representation must provide the necessary
correlation between the TE X source which makes up the user input (IR8) and
the target page representation (IRT). The data structure must, as well, provide
a means of restricting changes to the document so that the formatter can recre-
ate the minimum portion of the document possible, making the TEX formatter
incremental.

TEX stores information that is used in calculating line and page breaks, etc. in
boxes, which don't correspond in any obvious way with the source. The only real
correlation is that if one types a letter (and it's not part of a control sequence or
some other command structure), it should be able to be found on some page of
the output. We need to relate source tokens to output boxes through the IR in
a much stronger way. Output boxes are nested; a character is contained within
a line which is contained within a paragraph which is contained within a page.
We would also like to maintain this hierarchal organization with the source, since
characters and paragraphs have an obvious hierarchal structure in the source.

To allow the formatter to operate incrementally, we need a way of restricting
the changes to a document to minimize the amount of box rebuilding necessary.
This is aided by a hierarchal organization, since with one we can easily move
upward to higher levels in the document. For example, if a word is added to a
paragraph, that paragraph needs to have line breaks recomputed, but the pages
before the current one are safe. Later paragraphs may have to be moved around,
but unless they themselves change, their already computed line breaks are safe.

3.1 The IR Hierarchy

The preceding considerations imply a hierarchical model and thus we chose the
tree as the basic data structure. Of course, we need to modify the standard tree
paradigm to make it more useful for our purposes. From the highest level, the
IR for a document can be viewed as a tree of file nodes, each of which is the
root of a subtree whose leaves form the actual content of a source file as a chain

49

of text (IRs) . Embedded in this gigantic forest is a box structure (IRT) which
corresponds to the currently formatted pages. The file nodes as well as several
other types of nodes which are not part of IR3 or IRT are collectively called the
IRI.

Most nodes in the IR are doubly linked with their neighbors either horizontally,
vertically, or both. The primary reason for this strong connection is to make the
propagation of changes, syntax-directed editing, and incremental reformatting
efficient. A substantial amount of work done previously by the formatter will be
saved in the IR, since it organizes the original text and the resulting boxes into a
structure where changes can easily be restricted. For instance, if the user changes
a letter of a word in a paragraph, it is easy to determine that only the line breaks
of that paragraph will need to be recalculated and, if the change is simple and the
paragraph remains the same length, nothing else will need to be recomputed. The
premise for this optimization is based upon the context saved in the embedded
IRT which is linked to the nodes in question.

3.2 W h a t Lives In T h e IR?

The information that needs to be represented in the IR is the same as that
which TEX uses in its horizontal, vertical and math lists, with a few additions.
IRs contains the simplest possible information: the actual text. In addition,
the target representation also needs to be related to it. At the target level, TEX
only knows about rules and characters, we generalize this to boxes so that we
can maintain more output state information (these boxes make up the IRT). In
addition to the linking pointers, a box in IRT contains the image and its position
relative to the origin of a page. A box also contains a number of attributes such
as its dimension, the type and size of current font, etc. which can be queried or
modified by the proof editor. Another important piece of information is the TF.X
code which corresponds to certain operators for modifying certain box attributes.

The formatter generates IRz nodes on top of the IRs. For instance, the text
{group} in IRs will be linked to a common parent in the IRI of type group]by
the formatter. These IRx nodes, together with all IRs entries, will be related to
the IRT structure. However, some IRs and IRI nodes may not have associated
boxes in IRT and similarly some boxes may not have corresponding nodes in IRs
or IRI. For example, a group node would have no output representation and
therefore no box in the IRT; and a page box would have no single representation
in the IRI.

So far we have seen two types of IRI nodes: file (\ i npu t) and group ({ . . . }).
Some other types include par (\par or a blank line), math ($ and $$), cs (control
sequence), special (\ s p e c i a l) , etc., which should all be self-explanatory. These
nodes are the minimum necessary given the structure of TEX documents. We may
add others later to make optimizations for the formatter, but these are the ones
we think wilt be necessary to describe a TEX document, and to relate the IRs and
the IRT. This IRI along with the IRs and the IRT form the concerted whole,

50

the IR, that will allow us to overcome the multiple representation problem.

4. F u n c t i o n a l i t i e s

Generic operations for the two base editors include (1) syne, (2) insert~modify,
(3) move~scroll~search, (4) select, (5) cut/paste, (6) attribute, and (7) file. These
operations can be classified as destructive or non-destructive. Destructive opera-
tions modify the IR and mark the corresponding nodes dirty while non-destructive
ones only traverse through IR, inspecting the node content. Among the generic
operations, (1), (2), and (5) are destructive, (6) and (7) may or may not be
destructive, and the rest are non-destructive.

Sync is the command which invokes the formatter to bring the target repre-
sentation up to date. As mentioned earlier in Section 2, changes made to the
proof window will propagate to the text window immediately, but not to the
proof window itself. In other words, any modifications done in either editor will
only be reflected in the source window in real time. Some hints will be shown
in the proof window to indicate any images known to be dead. One technique
considered is to paint the dead regions in a different gray tone, but this can only
be approximations because in many cases the scope of a dead region is very hard
to determine without reformatting.

Insertions will be modeless; text can be inserted at the current cursor position
without having to invoke any insert command. Modifications will be syntax-
directed based on the IRx hierarchy. For instance, an at tempt to delete just one
delimiter of a group ({ . . . }) will be prohibited because otherwise the remaining
text will be syntactically invalid.

The move type is a collection of cursor moving operations. VORTEX will support
all of the standard ones such as moving forward and backward either horizontally
or vertically. Scrolling is a special case of cursor motion. It can he either mono-
lithic, affecting only one window, or synchronized, where both windows are forced
to display approximately the same text. The latter case may imply a sync op-
eration if the two representations are out of phase in terms of the content to be
displayed. Yet another special case of cursor moving is searching. A variety of
searching schemes will be supported including ordinary search, regular expression
search, incremental search, and a very special kind called logical search. Logical
searching allows one to go to arbitrary pages, sections, chapters, or other logical
entities in a formatted document easily and will apply to the proof editor only.

A ring of selection buffers will be maintained. Structural selections correspond
to traversing IRs U IR~. Starting at the IRs, each additional select points to
a higher order object in the hierarchy. For example, one selects a letter, two does
it for a word, three for a group, etc. Arbitrary selections, on the other hand, are
simply a consecutive chunk o f text in IRs. That is, one explicitly sets a marker at
one place and moves the cursor to a second, and the text between the marker and
current cursor position becomes a selection when the select command is called.
Each new selection pushes the old ones into a ring buffer. This buffer may be used

51

by some operators like cut~paste as implicit operands. Specific operators of the
cut/paste type include erase (remove everything in the current selection), copy
(duplicate the current selection to another place), and move (a copy followed by
an erase).

Attribute operations are specific to the proof editor. There are primarily two
types within this category: query and modify. For each object selected, queries
can be made on its attributes such as mode (math, horizontal, etc.) font (type
and size), dimension (height, width, depth), operators (cut, paste, etc.) and the
corresponding TEX code (to be mapped back to the source), etc. Some of the
attributes can be modified based on the operators registered and the result will
propagate to the IR8 automatically. Operators registered for IRT nodes are
largely appearance fixing commands like change of margins, fonts, breaks, and
glue.

Finally file operations like read and write are self-explanatory.

5. User Interface

The two base editors are homogeneous in the sense that they are manipulating
essentially the same abstract object (document). But at the same time they are
also heterogeneous because their underlying representations are in fact different.
From the user's point of view, there should be only one system with a uniform user
interface rather than having to work with two editors with two sets of protocols.
Furthermore, it is a desirable feature that any functions be realized by both
mouse/menus and keyboard input. The primary reason for this consideration is
that it makes ~)RTE X still useful even with only conventional terminals available.
Given the complication, a variety of interesting issues have emerged in the design
of VORTE X user interface.

Standard cursor moving keystroke commands (e.g. C-f for forward, C-b for
backward, C-p for up, C-n for down) will be supported. But an easier method
is simply to drag the mouse and point at the desired position. However, this
technique is restricted to the current visible window. To access text outside the
current window, a scrolling facility must accompany the mouse dragging. Making
selections is another good example. For structural selections, one mouse click, for
instance, selects a character, two consecutive clicks does it for a word, three for a
group, etc. The keystroke version for this may be some special command which
takes an optional prefix argument as the indicator for the depth of traversing
in the I R hierarchy. Thus the command itself selects the character after the
cursor, with prefix argument 1 it selects a word, with 2 it does it for a group, etc.
In another case, scroll bars will be available for mouse lovers, but conventional
scrolling commands bound to keystrokes will also be provided.

What is important here is that the same paradigm will work in both types
of windows, although the objects returned as a result of similar commands may
be different. For example, four consecutive mouse clicks in the text editor may
return the current file while in the proof editor the same command may select the

52

current page being displayed in its window. This is a footnote to the fact that the
two editors are dealing with two different representations: there is no such notion
as a page in the source and similarly no such notion as a component file within
a target. Nontheless, from the user's point of view, it suffices to have a uniform
interface to the same generic operators. The returned results, though may not
necessarily be the same, can always be approximated asynchronously using the
8ync option.

6. Formatting and Display

The key strategy in VORTEX's incremental formatting (compiling) is the idea of
structure-oriented editing which works on the I R hierarchy rather than on in-
dividual characters. This is an approach taken by a number of programming
environments such as [4,6,18]. Incremental compilers assume a priori the exis-
tence of an underlying internal representation which must be created initially by a
non-incremental process. ~0RTEX's formatter plays the dual role of constructing
the I R initially and maintaining it afterwards. Its non-incremental part will also
be invoked whenever the incremental part finds itself unable to proceed, thereby
providing a graceful escape from any unexpected situations.

In VORTE X, IR8 is a stream of text. Some of its entries will be marked dirty
by the two editors after some editing. When 8ync is invoked, the formatter starts
parsing from the leftmost dirty entry in the IRs . As it goes along, IRx nodes
will be created and new boxes will be generated and merged to IRT. It will mark
an IRT box as being one of the following types: same, relocate, new, or dead.
The reason for this is to provide the necessary information for the proof editor's
redisplay algorithm to work incrementally.

The formatter will skip consecutive clean IRs entries as soon as the first entry
with a corresponding IRT box marked same is encountered, tt resumes the
computation upon reaching a dirty entry with the necessary context retrieved
from the IRT boxes linked to its neighbors. The formatting terminates at a point
when no dirty entries are found in the remaining IRs , or the selected page has
been generated, or an error is detected. At this point, if there are no errors found,
the proof editor will be invoked to redisplay its window. Otherwise the text editor
will be positioned to the error spot and a diagnostic message will appear in the
message window. The user can then make fixes and reiterate the process.

The proof editor redisplays its window based on the type of IRT boxes visited.
It starts from the box which corresponds to the top of the selected page. It ignores
any boxes marked same. Relocate boxes wilt be copied to their destinations and
new boxes will be rendered. Finally dead boxes will be erased. All these will
be executed using Bit-Blt operators [5], an efficient set of primitives for bitmap
graphics. A similar idea but much more complicated in magnitude has been
implemented in Yale's PEN editor [3].

The text editor, on the other hand, is based on an ordinary textual window
whose redisplay algorithms are relatively well known [8,9]. VORTEX's text editor

53

will take a similar approach in this respect.

7. Conclusions

We believe TEX is an excellent system, but is based on a batch-oriented software
technology. VORTE X is a system that attempts to integrate the best features of
TEX with interactive editors, incremental processing techniques, and a uniform
and friendly user interface. We have sketched in this paper a possible design to
realize the objectives of VORTE X . Although some of the ideas will not be verified
until the system is implemented, our initial study on the efficiency and storage
requirements has indicated that the basic model we have derived is feasible.

We also expect to support graphics and other non-textual objects in our sys-
tem. Among the work being done are the design of a VORTEX-specific syntax ibr
\ s p e c i a l ' s argument list, a direct manipulation table tool, and an object-oriented
graphics editor.

8. References

[1] 8010 STAR Information System Reference Library, Release ~.2. Xerox Oi~ce
Systems, E1 Segundo, California, 1984.

[2] Interleaf Publishing Systems Reference Manual, Release 2.0, Vol. 1: Editing
and Vol. 2: Management. Interleaf, Inc., Cambridge, Massachusetts, June
1985.

[3] Todd Allen, Robert Nix, and Alan Perlis. PEN: a hierarchical document edi-
tor. In Proc, of ACM SIGPLAN/SIGOA Symposium on Text Manipulation,
pages 74-81, Portland, Oregan, June 8-10 1981.

[4] Malcolm Crowe, Clark Nicol, Michael Hughes, and David Mackay. On convert-
ing a compiler into an incremental compiler. SIGPLAN Notices, 20(10):14-22,
October 1985.

[5] James D. Foley and Andries van Dam. Fundamentals of Interactive Computer
Graphics. Addison-Wesley Publishing Company, Reading, Massachusetts,
1982.

[6] Christopher W. Fraser. Syntax-directed editing of general data structures. In
Proc. of A CM SIGPLAN/SIGOA Symposium on Text Manipulation, pages 17-
21, Portland, Oregan, June 8-10 1981.

[7] Richard Furuta, Jeffrey Scofield, and Alan Shaw. Document formatting
systems: survey, concepts, and issues. Computing Surveys, 14(3):417-472,
September 1982.

[8]

[9]

54

James Gosling. A redisplay algorithm. In Proc. of ACM SIGPLAN/SIGOA
Symposium on Text Manipulation, pages 123-129, Portland, Oregan, June 8-10
1981.

B. S. Greenberg. The Multics Emacs Redisplay Algorithm. Technical Report,
Honeywell Inc., 1979.

[10] J. Gutknecht. Concepts of the text editor Lara. CACM, 28(9):942-960, Sep.
1985.

[11] Michael Hammer, Richard Ilson, Tim Anderson, Edward J. Gilbert, Michael D.
Good, Bahram Niamir, Larry Rosentein, and Sandor Schoichet. The imple-
mentation of Etude, an integrated and interactive document production sys-
tem. In Proc. of A CM A CM SIGPLAN/SIGOA Symposium on Text Manipu-
lation, pages 137-146, Portland, Oregon, June 8-10 1981.

[12] L. Johnson. Macintosh Mac Write Manual. Apple Computer, Inc., Cupertino,
California, 1983.

[13] Donald E. Knuth. The TEX Book. Addison-Wesley Publishing Company,
Reading, Massachusetts, 1984.

[14] Butler W. Lampson. Bravo Manual. Xerox Palo Alto Research Center, Palo
Alto, California, 1978.

[15]

[16]

[17]

[18]

Joseph F. Ossanna. Nroff/Troff User's Manual. Computer Science Technical
Report 54, AT&T Bell Laboratories, Murray Hill, New Jersey, October 1976.

Charles L. Perkins. The Multiple Representation Problem. Master's thesis,
Computer Science Division, University of California at Berkeley, Dec. 1984.

Brian K. Reid. Scribe: A document specification language and its compiler.
PhD thesis, Computer Science Department, Carnegie-Mellon University, Pitts-
burgh, Pennsylvania, October 1980.

Tim Teitelbaum and Thomas Reps. The Cornell program synthesizer: a
syntax-directed programming environment. CACM, 24(9):563-573, Sep. 1981.

[19] Warren Teitelman. A tour through Cedar. IEEE Software, 1(2):44-73, April
1984.

E a s y T F ~ : T O W A R D S I N T E R A C T I V E F O R M U L A E I N P U T

F O R S C I E N T I F I C D O C U M E N T S I N P U T W I T H TEX

Ester Crisanti (*)
Alberto Formigoni (*)(**)

Paco La Bruna (*)

(*) Te. Co. Graf., Milano (Italy)
(**) Universitg degli Studi di Milano,

Dipartimento di Scienze dell'Informazione (Italy)

A b s t r a c t

TEX presents some dittlculties in preparing scientific texts because of an input
language with many commands to remember, a linear language used to describe
non-linear objects (formulae), a non-interactive processing and the need to re-
process the whole text also after small modifications.

EasyTEX's Formula Processor attempts to give a solution to these problems,
allowing interactive, pop-menu driven formulae input and editing and producing
a file suitable for TEX processing.

EasyTEX is thought to be an integrated environment for scientific document
preparation able to work both as a stand-alone system and as a TEX front end.
This project is being carried out in steps, or releases, the first of which, the
Formula Editor, is now completed.

Formulae may be interactively input using EasyTEX and then inserted into
source flies for TEX processing by means of the \input command.

EasyTEX is now implemented on IBM and compatible PCs, using various types
of graphic resolution (including 1BM PC basic graphics) for its bit-mapped dis-
play.

1. I n t r o d u c t i o n

As it is well known, the TEX typesetting system allows the creation of high quality
documents, performing automatic formatting and allowing a so-called fine tuning
of particular typographical items on the base of commands (Control Sequences)
the typesetter intersperses within the text.

TEX is particularly useful in typesetting scientific texts, containing formulae
and tables, because of a reduced complexity in the description of such text ele-
ments and the possibility of using (also pre-defined) macros.

The language used to describe to ~ the document layout is of procedural
mark-up type and processing is of batch type.

56

TEX , along with other similar systems, allows lower typesetting costs in the
typographical world. But, moreover, TEX has introduced a new possibility in
preparing high quality documents: the author can be himself the typesetter of his
texts with a relatively low effort. This is also an important contribution to the
circulation of scientific grey literature.

Though TEX reduces the complexity of typesetting and offers a powerful tool
to high quality documents authors, some difficulties remain:

1) the typesetter must know an editing language to input the document text;
2) the typesetter must know TEX commands and language syntax to direct all

processing;
3) it is quite difficult to foresee the final document layout while entering the

text;
4) there is the inconvenience of seeing all TF~ commands within the text;
5) the whole text must be reprocessed even after little modifications to the text,

in particular while modifying TEX commands during the layout adjustment.

All these difficulties made us think about the opportunity of developing an
interactive system offering an user-friendly interface based on commands easily
chosen from pop-up menus. Such a system, called EasyTE X, should provide
interactivity for all principal TEX commands and features. EasyTEX functional
characteristics are presented in the proceedings of the conference "Protext II" on
the Text Processing Systems [7].

EasyTEX's idea grew up and became that of an integrated environment for doc-
ument preparation, particularly for scientific documents, which might also stand
as an interactive TEX front end. This is the reason why EasyTEX's architecture
is made up of three integrated environments: a Word Processor (WP), with all
main facilities offered by TEX; a Formula Processor (FP), to simplify formulae
input; a Box Processor (BP), to introduce a (although limited) text-image in-
tegration. Interactivity was planned to be it's main characteristic, along with
user-friendliness, for all TEX principal functions, though allowing any other TEX
command to be specified through so called passive commands.

Another important characteristic of EasyTEX had to be the possibility to run
on largely diffused and low cost workstations; we decided to implement EasyTEX
first on the IBM PC and compatibles with standard graphics under MS-DOS.

On the way, we realized that such a project should have been accomplished by
two or three steps, or releases. We planned to first complete the FP only as a
Formula Editor for TEX documents formulae interactive input; then to integrate
the FP with the WP, offering a first version able to work also as a stand-alone
system; and, finally, to introduce the BP and a mouse user interface.

The first step is now completed and this work intends to present EasyTEX as a
Formula Editor for TEX documents formulae interactive input. A description of
all functions now implemented will be done, along with some functional aspects
related with the user-interface and mathematical structures handling and some
peculiar architectural solutions.

57

2. Func t i ona l desc r ip t ion

EasyTEX's FP allows single formulae input, manipulation, storing and translation
to TEX source files. Such files may then be \input into TEX documents either in
math text style or in display style.

These operations can be performed easily because interactivity allows the im-
mediate display of the commands effect on the formula and pop-up menus drive
the user in the commands selection.

The FP also guides the user during input, so that, for instance, a fraction
input will be made easy by the cursor movements: the latter, when closing with
the return key the numerator, moves to the place where the denominator will be
placed, and so on.

TEX mathematical fonts are used on the screen, which is handled in a bit-map
way; this makes the user see the exact layout the formula will have when processed
by TEX within a document.

2.1 E n t e r i n g a f o rmu la

Let us suppose to input the formula:

~0
1 e - ~

V(x) = 1 + e -----Tdx"

Let us see how to do and how EasyTEX works during this phase; to simplify the
description, only the input sequence will be presented, omitting menu operations.
After invoking EasyTEX , on the screen will appear:

1) on the top the menu line;
2) in the middle the cursor, as a box;
3) on the bottom the image of the default virtual keyboard, that is italic for

letters and most used mathematical symbols for other keys.
The first step is to write V(x) =. This is simply done stroking the corresponding
keys. We get so the following result:

v(z) = 71.

We have now to input the integral. A simple selection of the integral menu
element will give:

= f D .

Not only the integral symbol has been displayed, but also the cursor is con-
veniently positioned to input the upper limit and the size of the font in use has
been reduced (from Text style to Script).

58

After writing the upper limit, this structure must be ended to begin entering
the lower limit. This is simply done by stroking the return key. The result will
be:

£ = .

Now, after entering the lower limit, on the screen there will be:

f0
1

= D

Similarly, the fraction argument and the exponents will be input with the
cursor and menu guide.

2.2 R o o t s , Fract ions and Blocks

These structures are characterized by dynamically dimensioned symbols.
EasyTEX interactively processes these structures, automatically dimensioning and
centering symbols and characters during input and always presenting on the screen
a formatted formula. For example, entering the formula:

would be done as follows:

1) the Root menu element is selected, yielding:

2) 3 and return will give:

3) the Fraction menu element is selected, giving:

4) e x is input, using the Exponent menu element, giving:

59

5) a return will give:

6)

/;
x and then return (to close the denominator), will give:

7) and, finally, another return (to close the root), will give:

The structure consisting of dynamically dimensioned delimiters with their ar-
gument is called Block. This automatic mechanism may be selected through the
Block menu element, instead of stroking delimiters directly from the virtual key-
board. In fact, in the latter case, delimiters will not be dynamically dimensioned.

For instance, if we want, instead of

o o

i = 0

to obtain

we can do that simply using E a s y ~ X ' s Block structure.

2.3 Matr ices and Tables

Easy~__~X also allows matrices and tables input. These structures are handled
interactively through menu and allow an easy input of such difficult text elements.

2.4 A c c e n t s

Easy2~X allows the use of several mathematical accents, such as 8, .~, ~,/g, etc.
Normally, a single character is accepted; in this case the accent is simply se-

lected from the menu after the character to be accented.

2.5 Edi t ing c o m m a n d s

EasyTF_~X's FP offers two levels of editing: the character or symbol level and the
structure level. In the first case, the cursor moves from a character or symbol to
another~ respecting the philosophy used for input. So, going back to the formula

60

~0
1 e-~

V(x) 1 + e ~ dx[--] '

pressing the ~- key would make the cursor move first on the x, then on the d,
then following e x, then after the x of the e's exponent, and so on.

In the second case, the cursor moves structure by structure, and pressing +--

key would make the cursor move first to contain dx, then to contain 1 + e ~' then

to contain and, at last, to contain V(x) =.

In the same way operate commands like insert, move, copy~ etc.
The FP is always in insert mode; the alternative state, replace, may be used

to replace parts of a formula already introduced. Replacing parts of a formula
causes EasyTEX to reformat the whole formula interactively.

The FP, before executing an editing command, checks the correctness of the
context in which that command must act. Some operations, in fact, cause error
messages to be displayed because they do not respect the syntactic structure of
the formula. For instance, removing a numerator in a fraction is not allowed,
while replacing the numerator is.

The FP may be, anyway, requested to omit structural checks on mathematical
constructs.

3. Architectural aspects

The FP architecture was defined as independent functional modules, communi-
cating by means of status data.

The modules constituting the FP are: Command handler, Memory manager,
Formatter and Filter.

The Command handler: performs interfacing with EasyTEX's Supervisor and
other Processors; receives, through the Supervisor, all inputs from the User inter-
face; coordinates, by means of status da ta the execution of the Memory manager,
the Format ter and the Filter.

The Memory manager is built up of a set of routines which allow the creation
and handling of the tree da ta structure, also implementing a virtual memory
mechanism.

The Format ter interactively handles the formula creation and manipulation
with respect to all problems concerning with symbols and characters positioning
and spacing.

The Filter updates the formatted formula image on the screen in correspon-
dence with all modifications and optimizing redisplaying time.

Some peculiar aspect concerning the data structure, formatt ing and the table
driven execution architecture will now be presented.

61

3.1 T h e t r e e s t r u c t u r e

The internal representation form of a non-ordinary text, such as mathematical
formulae, requested a careful study to satisfy different conditions: to allow fast
handling and processing by the system, to make easy the data transfer from main
memory to disk without making response times heavy and to have a structure
which could properly organize mathematical formulae.

Analyzing mathematical formulae, configurations similar from a structural
point of view were found; for instance, the integral and summation operators
are both constituted by four objects: a symbol, a lower limit, an upper limit and
an argument. Every formula then can be described as a finite combination of such
objects, called basic cor~ t ruc t s and speci f ic cons t ruc t s [13].

Associating to every base construct the root of a t ree data structure and to
every specific construct the related child nodes, we obtained a data structure
describing in a simple and convenient way a formula.

For instance, the formula

is mapped into the tree:

f

Formula

Integral String

Upper Lira Lower Lira

1 1
String String

a b

Such an association procedure may be iterated on all elements constituting a
mathematical formula to obtain a tree structure completely describing it.

3.2 T h e F o r m a t t e r

The technique used to format mathematical formulae is similar to the one used
by TEX. In fact, every formula is regarded as a box, itself built up by smaller
boxes down to a t o m i c - - i.e. no further splittable - - boxes, corresponding to
single characters and symbols.

62

Every box has a rectangular shape and has three associated sizes, height, depth
and width, used by the Formatter to build the formula image.

The tree data structure used by the FP allowed to implement the Formatter
module in a compact and efficient way. In fact, every tree node is associated with
a formula element and, at every moment, the formula (and tree) element box has
updated sizes. Some other data, such as the (x, y) coordinates of the box reference
point, are present in the node data in two forms: absolute and relative. Absolute
data are used for fast formatting and redisplaying when no changes occurred,
after a formula modification, to the box dimension and position; relative data are
used for fast formatting and redisplaying when, due to changes occurred to some
parent tree node, absolute box data have to be updated (heredity mechanism).

The most important difficulty in implementing the Formatter was in handling
conflict situations between boxes. We define a conflict situation in formatting
boxes when, modifying the dimension or position of a box, a partial overlapping
between two adjacent boxes occurs. For instance, introducing a fractional order on
a root, a conflict arises between the fraction box and the root symbol box (vertical
conflict) when the denominator is input. Conflict detection and resolution were
implemented and their algorithms inserted in the Constructs Table.

3.3 A table driven s y s t e m

EasyTEX'S FP and TEX Interface are characterized by a table driven structure.
In order to set memory managing and formatting free from different types of
mathematical structures, suitable and simple algorithms were defined and put in
a Constructs Table (CT). The CT is organized in a bidimensional array in which
every entry corresponds to a construct (basic or specific). The table contains
both structural information (font type, child nodes number and type, etc.) and
references to the algorithms used for formatting.

Due to the CT use, the Memory manager and the Formatter are context free
and operate, on the different structures, in a parametric way.

This solution offers some advantages, such as a simple compilation of a new CT
entry if a new construct has to be added; a lower number of duplicated data in
the nodes, such as child nodes number, structural check information, etc.(they are
gathered in the table element); a simpler implementation of a heredity mechanism
for formatting and redisplaying purposes, and so on.

Such a mechanism has also been studied for the TEX Interface. the TEX In-
terface is the EasyTEX's module that performs the translation from the internal
format (EasyTEX Document File format) to the linear format suitable for TEX
processing.

A translation table has been implemented by means of which every tree node
is translated, in a parametric way, to a TEX Control Sequence (for instance, the
integral node into \int) and every character is mapped either in a character or in
a Control sequence (for instance, a into \ alpha).

The final result is that, if a new mathematical construct has to be added (say,

63

trigonometric functions or set operators), only the CT and the TEX Interface
table must be changed.

4. F u t u r e d e v e l o p m e n t s

As we already said, (at least) two other steps are planned in EasyTEX's develop-
ment. The first of them, the implementation of the WP and its integration with
the FP, should be completed on next October; the BP integration and a mouse
user interface should be available on next February.

We received some other suggestions about EasyTEX's extensions, such as the
integration of another environment devoted to graphs design, useful in industrial
project design; we are now evaluating the opportunity of such extensions.

We were also requested to design a Document Data Base, based on'a Local Area
Network among PCs and a host system and using CD-ROMS, able to solve doc-
umentation (also technical) problems in industrial organizations. Such a system,
based on TEX and EasyTEX , is following the experience we made with SDDS [3],
together with Mondadori publishing company, CILEA and Universit£ di Milauo,
Dipartimento di Scienze dell'Informazione as one of the DOCDEL experiments
supported by the Commission of the European Communities.

Acknowledgements

The authors of the present work intend to give particular thanks to:
Prof. Gianni Degli Antoni, Director del Dipartimento di Scienze dell'Informa-

zione dell'Universit~ degli Studi di Milano, for the initial idea of EasyTEX and
for his support and encouragements during the project study and development.

Gloria Gazzano for her precious advice based on her experience in editors
project.

Mauro Beneduci, Marcello Casu and Giorgio Valtolina, respectively for their
works in the study and implementation of the User Interface, Font Manager and
TEX front-end.

Special thanks also to Giovanni Canzii for his support in TEX interfacing prob-
lems and in typographical characters handling, and to all those who somehow
gave suggestions useful to the project development.

64

References

1) J. Andre, Y. Grundt, V. Quint "Towards an interactive math mode in TE~?'
Proceedings of the First European Conference on "TEX for Scientific Docu-
mentation" Como, Italy, Addison-Wesley ed, (may 1985).

2) G. Canzii, D. Lucarella, A. Pilenga "A Scientific Document Delivery System"
Electronic Publishing Review (june 1984).

3) G. Canzii, G. Degli Antoni, S. Mussi, G. Rosci "S.D.D.S.: Scientific Document
Delivery System" Proceedings of the First European Conference on "TEX for
Scientific Documentation" Como, Italy, Addison-Wesley ed., (may 1985).

4) G. Canzii, G. Degli Antoni, D. Lucarella "TEX come standard per i CD ROAr'
atti del convegno "Text Processing", AICA, Milano, Italy (nov. 1985).

5) G. Canzii, A. Formigoni, E. Crisanti "EasyTEX: un ambiente integrato per la
preparazione di testi scientific, ~ atti del convegno "Text Processing", AICA,
Milano, Italy (nov. 1985).

6) G. Canzii, D. Lucarella, A. Pilenga "TEX come sistema di document delivery" in
"Office Automation: metodi e tecnologie', AICA informatica, Masson, Milano,
Italy (1986).

7) E. Crisanti, A. Formigoni, G. Gazzano, P. La Bruna "EasyTEX: an integrated
environment for scientific document preparation and interactive TEX front-
enc~' "Protext II", Proceedings of the Second International Conference on Text
Processing Systems, Miller ed., Dublin, Ireland (oct. 1985).

8) A. Formigoni "EasyTEX: un ambiente integrato per la preparazione di testi
scientifici", graduation thesis in Computer Science, University of Milan (aa.
1984-85)

9) L. Kernighan, L. Cherry "A system for typesetting mathematics" CACM, voi.18
(1975).

10) D. Knuth "The TEX boot?' AMS and Addison-Wesley (1984).
11) M. Levison "Editing Mathematical Formulae" Software Practice and Experi-

ence, vo1.13 (1983).
12) V. Quint "Editing mathematics on the buroviseur" in "Office Information Sys-

tem", Naffah ed., St. Maxim, North Holland, (1982).
13) V. Quint "An interactive system for mathematical text processing' Technology

and Science of Informatics, vol.2 n.3 (1983).
14) V. Quint "Interactive editing of mathematics" "Protext r ' , Proceedings of the

First International Conference on Text Processing Systems, Dublin, Ireland
(oct. 1984).

A Mul t i l ingual

Michael 3. FERGUSON
INRS- T~ldcomm unication s

Montrdal, Canada

A b s t r a c t

This paper discusses a modification to TEX that allows for multilingual hyphen-
ation on a paragraph by paragraph basis using standard TEX fonts. Although this
is a sumcient for most applications, it does not of itself solve spacing, linguistically
unique characters, text input, nor multilingual message problems. A discussion of
these problems, with special emphasis on solutions through TEX modifications, is
included. These suggestions are followed with a plea for standardization.

1. I n t r o d u c t i o n

This paper discusses a very efficient modification of TEX, that we refer to as
T ~ , that allows multilingual hyphenation, including words with accented letters,
using s t a n d a r d ~ fonts. The features and difficulties with the present system
are discussed in Section 2. Although in the TEX context, the solution to the
hyphenation problem, especially for words involving accented letters is primary
other concerns quickly become apparent. A number of these have already been
discussed by D6sarm6nien [1] for TEX in a French enviroment. This paper is
primarily concerned with these issues in terms of obtaining consistent elegant
modifications of TEX where necessary and a discussion of some of the difficulties
encountered.

D6sarm6nien has shown that the special conventions of French spacing are ad-
equately handled at the TEX format level without modifications to TEX itself. He
pointed out that some letters, such as "]~ " were not terribly pleasing in their
accented form and argued for inclusion of better designed forms in the fonts. He
modified the standard TEX fonts to include some of the accented letters used in
French. A further discussion of the inclusion of additional letter forms and their
accented alternatives is found in Section 3.

After acceptable output is obtained, the next issue that arises is with respect to
the ease of input. This assumes, of course, that the present input procedures are
sufficiently simple that a user will even attempt to obtain output. TEX has been
traditionally input through a text editor and a character oriented terminal. In

66

such an environment, the order and number of keystrokes for creating an accented
character, such as "5" along with its appearance on the screen, is important. This
will be briefly discussed in Section 4.

A system is not truly multilingual until its messages, and even its commands
are available in each language. Programming languages have been remarkably
resistant to linguistic modification and one suspects that TEX will be the same. A
brief discussion of some of the problems of so modifying TEX is given in Section 5.

Extensions to TEX, in keeping with the inviolable integrity of the TEX program
[2] file must be introduced via WEB [3] change files. A short discussion of some
of the problems and a partial solution is given in Section 6.

The paper ends with a plea for cooperation and standardization.

2. TE X e x t e n s i o n s -

T~X is obtained through a modification to TEX itself rather than by a program or
format written in TEX and has been in continual use, for French/English, at INRS-
Tdldcommunications and Bell-Northern Research (Montrdal) since early 1985. The
primary purpose was to allow for multilingual hyphenation without any modifica-
tion of the standard fonts supplied with a TEX system. The modification has two
parts - the introduction of multiple pattern and hyphenation exception sets and
the allowing of hyphenation of words containing accented letters, ie letters that
were obtained using TEX's \ accen t primitive. An example would be " d l d p h a n t "

which was written " \ ' e l \ ' ephant". Briefly the features of the extension are:

A new pr imi t ive integer parameter \ language has been introduced. The
value of this parameter controls the set of language \ p a t t e r n s and hyphen-
ation exceptions actually in force when hyphenation is attempted. This pa-
rameter defaults to zero and hence never need be mentioned in unilingual
installations.

• Hyphenation exceptions are language dependent.

Words with accents, such as 'T6picerie", will be hyphenated correctly.
These modifications of TE X will work, with accented letters such as " 6 "

built using TF~X's accent primitive or resident in the font. In addition they
will work whether the letter is accessed as a single character or as a ligature.

• \ l c code 1 and 2 are now used to indicate which characters are accents.
Note that \ l c code 0 indicates a non letter.

Any number of languages may be used. The t r ie_op table has been ex-
tended to 16 bits from its current size of 8 bits. The present bilingual
(French/English) running at INRS-Tdl6communications uses, 238 t r ie_op
locations. French alone uses 108 and English alone 181.

67

The changes are upward compatibl¢ a standard p l a i n r ex can be built
into a format file by a modified i n i t e x . However, the format file has been
modified so that a non-extended p l a i n , fret will cause a "fatal formaterror"
if used with T~X.

There is one major and a few minor restrictions. The m a j o r r e s t r i c t i o n is

* all words in a paragraph are hyphenated according to the \ l anguage in
force at the end of the paragraph.

TEX operates on entire paragraphs at once - the major reason why it does such an
excellent of line breaking. Although each character contains information about its
font, it does not contain any information about the \ l a n g u a g e in force. Thus the
s ing le value of \ l a n g u a g e when the the paragraph is being processed is the ,one
that controls which pat terns will be used. The most obvious solution is to extend a
character node to include a byte for the \ l a n g u a g e . This would have the virtue
of also extending TEX's main memory pointers to be 24 bits and hence allow for a
rather dramatic increase in main memory. It would be up to the compiler to pack
this efficiently.

Some of the minor restrictions, at least in terms of French/English but not
necessarily for all languages are as follows. It is not clear which ones need be
relaxed for which languages.

Discretionary hyphenation spellings, as required in German, are not auto-
matically included. These probably could be added, in special format to
the \ p a t t e r n s , and handled during hyphenation much as ligatures. This
would mean an additional extension to T ~ .

Accents must be in the same font as the characters in the word to be
hyphenated. This can probably be relaxed by allowing ~ to ignore a
character font if the character has an \ l c c o d e of 1 or 2.

* Accents may not be placed on ligatures.

Characters built up through hboxes rather than the accent primitive are
not allowed in hyphenatable words. It is not obvious how to relax this
constraint.

A new value of \ l anguage determines both a set of hyphenation pat terns
and exceptions. There is no provision for using an additional set of hyphen-
ation exceptions with an already existing set of patterns. For instance, if it
were really important that "Random House" hyphenation be used rather
than "Websters", a set of patterns for both would be required.

To change hyphenation rules it is only necessary to change the value of \ l a n g u a g e .
However, since accents and certain characters may be legitimate in one language

68

and not others, it may also be desirable to modify certain \ l c codes . There are
checks in T ~ to prevent disasters if \ language is somehow not within the range
allowed.

2.1 Multil ingual Patterns and Hyphenation Exceptions

The incorporation of multiple pattern lists and hyphenation exceptions is done by
modifying the appropriate data structures as follows:

• Each hyphenation pattern is prefaced with the current \ language value
before inserting it into the pattern trie.

• Each hyphenation exception is prefaced with the current \ language value
before entering it into the exception hash table.

• When a word is to be hyphenated, each pattern is prefaced with the current
\ language value before attempting to find a match.

In order to put patterns in correctly and safely, a rather rigid, but simple,
procedure involving the value of \ language is used. In contrast to the present
TEX, \ p a t t e r n s may (must!) be called several times, at least once for each lan-
guage. This gives room for \ language to be modified between calls. On the last
set of patterns, the trie' is compressed. All pattern inputs, except the last are
indicated by adding 1000 to the value of \ language. Thus \language--1001 in-
dicates that this is the second language and it is not the final set of patterns, while
\language--1 indicates that this is the second language and it is the final set of
patterns. The complete set of rules are:

• \ language must start at 0 mod 1000. and be increased by no more than
1 as each new language is added.

• If \ l a n g u a g e > = 1000, then the present pattern set that is being input~ is
not the last. For example

{\language=1000 ~ Engl ish (0)
\ p a t t e r n s { . . . }
}
{\language=1001 ~ French (1)
\ p a t t e r n s { . . . }
)

(\ language=2 ~ Spanish (2)
\ p a t t e r n s (. . .)
)

would input patterns for three languages, with the values given in the paren-
theses to be used to invoke hyphenation in that language. The grouping

69

braces are optional . . . but mak~ ~ \ l a n g u a g e local. The accented letters
are put in the normal way that accents are invoked in TEX, namely with
forms such as " or ^. These forms were locally redefined to drop the correct
character into the patterns.

N o t e a g a i n t h a t the v a l u e of \ l a n g u a g e rood 1000 m a y increase by at
m o s t 1 e a c h t i m e p a t t e r n s is ca l led . T h i s is t o p r e v e n t u n u s e d l a n g u a g e
v a l u e s ex i s t ing . I f t h i s is v io la ted~ an error wi l l o c c u r . Since ± n i t e x
is a l r e a d y ins ide \ p a t t e r n s , t h e on ly p o s s i b l e a c t i o n is to a b o r t and
c o r r e c t t h e p r o b l e m in t h e i n p u t file.

The first set of patterns initializes the pat tern memory while the final set pro-
duces the compressed trie memory. If \ l a n g u a g e never goes below 1000, the
compressed trie will no t be written. This will show up in the "stats" at the end
of initex with a trie memory size of 0.

A new variable lan3nax, which is saved in the format file, indicates the maxi-
mum number of languages that have been initialized using \ p a t t e r n s . lan_max
is modified o n l y when \ p a t t e r n s is called. If \ l a n g u a g e exceeds lan_max, a
pleasant error message results, and \ l anguage is reset to 0. It will maintain that
value within the group where the error message occurs.

2.2 M o d i f i c a t i o n s for H y p h e n a t i n g W o r d s w i t h A c c e n t e d C h a r a c t e r s

The modifications that allow for the hyphenation of accented words are as follows:

* Designate accents with \ l c c o d e of 1 or 2.

. Make accent kerns implicit so that they disappear before the word is sent
to the hyphenation routine.

• Reconst i tute the accents after the hyphens are returned from the hyp]hen-
ation routine.

The net effect of this is that hyphenation patterns will be applied to words
involving accents. This means, for instance, that the word "consid~rions" has
the hyphens "con-sid-~-ri-ons" if the English patterns in Plain are used, but is
hyphenated as "con-si-d~-rions" if the French patterns are used. Note that the
English pat terns insert two incorrect hyphens and miss another. In addition there
wilt never be a hyphen inserted between an accent and its following character since
that case has never been given an odd number.

Two \ l c c o d e s were used to allow for different placement of the same accent
symbol - for instance above or below the accented character. Initially it was
thought that the cedilla , would require such special t reatment but that turned
out not to be the case. The second value could be used for language dependent
accent placements. However this is of limited utility at the moment as there is no
way, other than recompiling]~_/X to modify the accent placement routine.

70

3. Font Def in i t i on and Pr int ing of Specia l Characters

A "special character" is arbitrarily defined as a letter or punctuation that does
not appear in the TEX's standard Roman fonts. The "guillemets" for quotations
in French, ie << guillemets >), are examples of punctuation. The <~ >> here have
actually been made from the 0 in the mathematic fonts. They do not really have
the correct shape. Whether they are adequate is a mat ter of conjecture. There
are several ways to introduce additional special characters into TEX.

o Build a composite form using TEX's \ a c c e n t primitives. T ~ will hyphen-
ate in this case.

o Build a composite form by shifting \hbox and \vbox forms. ~ will not
hyphenate in this case.

Replace a character in the standard TEX font with the desired form. This
approach does not appear to allow for all of the forms required for French
[1] let alone allow extension to multiple languages.

Add the special characters to the upper 128 locations in the font. This
is probably the most desirable approach for the long run especially if it
is possible to cover all of the Roman alphabet based languages with 256
characters. However doing this will require a number of extensions to TEX.
Specifically

<> Several tables that are presently 128 must be extended to 256. These
include tables for \ l c c o d e , \ u c c o d e , \ s f c o d e . If the mathemat-
ics fonts are extended, then the \ d e l c o d e table must also be in-
creased. These changes are quite straightforward. If the special
characters are to be allowed in TEX command sequences and/or
processed syntactically by TEX , then several more tables must be
changed. These are discussed in Section 4.

o The TEX commands \ u p p e r c a s e and \ l o w e r c a s e rely on the the
simple numeric relation between the upper and lower case versions
of a letter in ASCII coding. A similar relationship for the upper and
lower case letters in the upper 128 locations would allow a simple
modification to these routines. If simple relations are not main-
tained, two additional tables relating 'upper and lower case will be
required.

Non universal changes in character locations in fonts will be detrimental
to the electronic interchange of documents. Clearly such extensions should
be done in some international forum.

7]

4. Text I n p u t

The output of special characters in text i~ quite a bit simpler than the input of
those characters. T~X, with perhaps the table extensions for characters in the
upper 128 locations of a font table as indicated in the previous section, adequately
handle these output problems. The input problems are complicated by

, the number of keystrokes and order of input,

* whether the special character is generated as a single character on the
terminal screen,

, and whether it is required that special characters be allowed in command
sequences.

The first two complications are intimately bound to the particular terminal,
keyboard, and text editor in use. Very few non-English keyboards have all of the
special and accented letters required by a specific language. Special characters
are obtained either directly with one stroke, or indirectly with three strokes using
a <backspace> or <accent> key. The <accent> key stops the advance of the
carriage and allows for superposition. An " ~ " is thus formed in any of the follow-
ing ways - <a>, <accent><' ><e>, <accent><e><' >, <' ><backspace><e>, or
<e><backspace><'>. In standard TEX input, one uses <\><'>~e>. the number
of keystrokes is 3 but the input order is constrained. There does not appear to be
any universally agreed upon input procedure nor any particular set of displayable
special characters.

A possible solution to the first two complications, and the one currently in
use at INRS-T~l~communications is to have a TEX preprocessor that converts the
special characters to their composite TEX form. For most operating systems, this
step can be imbedded in a command procedure so that it is relatively transparent
to the user. However, the actual TEX file cannot be processed directly by TFjX.
A slightly more sophisticated form of this procedure is to convert automatically
between a TEX form and an editing form upon entry and exit from the text editor.
This has the advantage of ensuring that the file that is kept is processable directly
by TEX but gives rise to some minor complications with a system crash during
editing.

The third complication is much more severe. It basically requires that the
number of possible input characters be increased from the ASCII standard of 128 to
256. The changes to TEX to accomodate this are extensive. Simple changes involve
the increase to 256 of the single and active character control sequence tables along
with the \ c a t code table. A slightly more complex one involves modifications of
TEX's hash tables. One change that appears to be quite difficult, and may in
fact impose a restriction to 254 input characters rather than 256 involves the use
of the character values 128 and 129 to indicate \span_code and \cr_code while
processing alignments for tables. This internal coding appears to require that at
least two input code values not be used. This effectively restricts the maximum

72

number of inputs to 254. The r e c o m m e n d a t i o n is that special characters
be not allowed for c o m m a n d sequences and that the files be p r e / p o s t
processed d u r i n g i n p u t / o u t p u t of t h e t e x t ed i tor . The danger is that
characters that are single keystrokes will sneak into TEX definitions and create
errors.

5. Multi l ingual Messages and Primitive Commands

T ~ generates only English error messages and/or instructions. INRSTEX [4]
generates bilingual messages with the appropriate message determined by the
value of \ language . Except for \ v e r s i o n f r a n c a i s e which invokes the French
forms, spacing, messages, and hyphenation, the commands used are English. Thus
\ b e g i n l i s t . . . \ e n d l i s t are used in both versions for lists. It would have been
quite simple to invoke a large \ l e t list to create equivalences but this was not
done, primarily so that a knowledge of the other command set was not required
when editing a document in the other language. I t is not recommended that
mult ip le language commands be a p a r t of ~ either.

Conceptually a change in the messages from English to another language merely
requires the translation of the appropriate strings in the WEB program. Two types
of strings exist - those that are printed directly, such as "Please type the name
of your input f i l e " and those that are retrieved from the pool file. Those
strings printed directly are a part of the TEX program and those in the pool file
are incorporated in the format file. The pool file accounts for almost of the message
strings and WEB takes care that the PASCAL and pool files match. This means
that it is virtually impossible to add a new language without recompiling TEX
and INITEX. At this point it is also not clear the best procedure for incorporating
\language dependent messages.

6. Change Files and TE X Modifications

TEX is written in WEB and has been placed in the public domain but at the same
time declared to be unchangeable. In keeping with this spirit, T~X is produced
using WEB's change file mechanism. Unfortunately, to actually produce a running
version of T ~ , a system change file, in this case one for a VAX/VMS system, was
also required. Since WEB only allows one change file, this meant that the T~X
change file and the VAX/VMS change file had to be merged. It also means that
additional modifications, for example involving multiple language messages, would
require further merging. To facilitate this merging a set of EMACS [5] routines
were written that do the following:

• Compare a change file with the original file and number the change sections
according to the section numbers that would appear in an unchanged
woven version of the file.

73

Merge two change fil(~s and not(, when there are identical section numbers
in each file. If there are identical section numbers, it is possible that the
change files could conflict and/or tile order of the changes in a particular
section are not consistent with the original. These potential errors are
corrected by hand editing. The ~ and VAX/VMS change files conflicted
in only two sections. In both cases only the merge order had to be changed.

These routines do not solve the multiple change file problem but they do make
it possible to incorporate T ~ simply into system change files.

7. S u g g e s t i o n s for C o o p e r a t i o n

It is clear that TEX is a powerful typesetting and document preparation system
which is capable of operating in multiple languages. One of TEX's most important
attributes is its portability and openness. The intent has always been to allow
for TF~'(files to be processed by any TEX system and obtain identical output. Al-
though this is compromised somewhat by different format files, it can be totally
destroyed by incompatible fonts and incompatible extensions. Our experience has
convinced us that modifications such as those incorporated in Tf~X are necessary
for the smooth working in a multilingual environment and even in a unilingual
environment when using standard TEX fonts and accented characters. It is im-
portant that there be cooperation amongst the various groups so that interchange
of documents in different languages be possible with the minimum of additional
environmental information.

R e f e r e n c e s

.

.

.

.

.

J.A. D6sarm6nien, "How to run TEX in a French Environment: Hyphen-
ation, Fonts, Typography", Proc. First European Conf. on TEX for Scien-
tific Documentation, D. Lucarella, Editor, Varenna, Italy, May 16-17, 1985.

D.E. Knuth, TEX: T h e P r o g r a m , Addison Wesley, 1985 - also available
in WEB file form on the TEX distribution tape.

D.E. Knuth, "The WEB System of Structured Documentation", Computer
Science Dept. Report, Stanford University, 1982 - also available on t h e ~ X
distribution tape.

M.J. Ferguson "The I N R S ~ X Reference Manual", INRS Technical Report
No. 84-19, 1984

R.M. Stallman, "EMACS: The extensible, customizable self-documenting
display editor", Proc. ACM SIGPLAN/SIGOA Conf. on Text Manipula-
tion, pp 147-156, Portland Ore., June 8-10, 1981 - the EMACS actually
used is the James Gosling version.

INRST~X: A D o c u m e n t Preparat ion Sys tem for M u l t i p l e
L a n g u a g e s

Michael J. FERGUSON
INRS- Tgldcomm unications

Montrdal, Canada

Abstract

This paper discusses a system for the preparation of documents, primarily but
not exclusively scientific, in several languages. It can be viewed as a very large
extension of P l a i n or as a simpler version of lATEX. Care has been taken to
maintain syntactic consistency and to separate the document formatting chores
from the document preparation housekeeping chores. This paper is not a complete
description of INRST~Y but rather describes its capabilities and chooses 1ists and
combined text/graphics for some detailed comments.

1. Introduct ion

I N R S T ~ is a system to aid in the preparation of documents in several languages
using ordinary fonts. The first, rather primitive, version was developed using
TEX78 in 1982. The present version is based on TEX82 and was completed in
1984. It has been in continual use since that time at INRS-T616communications
and Bell-Northern Research (Montr6al). The key enhancement since 1984 has been
the inclusion in 1985 of a graphics capability that allowed for printing complete
documents without any cutting or pasting. This latter capability has dramatically
increased the commitment to the system. The particular version referred to in
this paper uses a VAX/VMS computer and a QMS Laser Printer, but is easily
modifiable for other configurations. The two languages actually used are French
and English.

INRST~X has been designed to sit on top of P la in . All of the commands, except
\ foo tno te~ are identical those described in the TEXbook. INRST~X believes that
groups should be designated and syntactically consistent. Groups in INRST~X are
defined by either braces {. . .}, \ b e g i n . . . \ e n d . . . pairs, or the mathematic
groups implied by $. . .$ or $$.. .$$. In some cases \ b e g i n . . . \ e n d . . . syn-
onyms of P l a i n commands that imply grouping have been defined. An example

* The footnote macro has been modified to be similar to t ha t used in t he TEXbook. The ne t
effect is t h a t the result is nicer and its use identical to \~ootnote in P l a i n .

75

i s \ b e g i n m i d i n s e r t . . . \ e n d m i d i n s e r t f o r \ m i d i n s e r t . . . \ e n d i n s e r t . Un-
like LATEX Ill, I N R S ~ believes that entities such as sublists should be defined
explicitly by a \ b e g i n s u b l i s t . . . \ e n d s u b l i s t or by the designated abbrevi-
ations \ b s l . . . \ e s l rather than being determined by depth of environmental
nesting. Like LATEX , entities may be nested and work correctly. Thus it is possi-
ble to have lists consistently spaced inside narrowed text.

Like L A W , INRST~X is intended to make it easy to get off the ground in the
use of TEX. Indeed, when working within a particular document format, the effort
to produce a document is much simpler than working with P l a i n directly. Even
the modification of a document format is relatively simple. "Elementary" TF)(is
probably best seen through a I N R S T ~ or equivalent filter than through P la in .

It is difficult in a short paper, or even a long one, to give the flavor and/or
appreciate the power of a system. Short descriptions tend to all sound the same,
giving the impression that any particular system is capable of everything - eas-
ily! Sometimes littie features, that seldom show up except through use, create
large architectural problems. For instance, the requirement that a message to the
terminal, that included a command such as \LaTeX, not expand it into its hor-
rible form of L \ke rn -.2era \ r a i s e .3ex \hbox { \ s c a } \ k e r n -.09era T \ke rn
- . 1667em \ l o w e r .Sex \hbox{E}kkern - . 125em X necessitated a ring buffer of
token lists - totally hidden from the user. As part of its user friendly at t i tude,
INRST~X does send out reassuring messages when processing such items as sec-
tion heads or cautionary types such as when the user inserts a " " " rather than
a " " " o r " " ".

The basic capabilities of INRST~X will be described in Section 2. The bilingual
features are described in Section 3. Since there is not enough space to describe
everything in detail, two aspects will be described to give a flavor. Section 4
describes INRST~X's approach to lists while Section 5 describes INRST~X's ap-
proach to combining text and graphics. INRSTF~X's table making macros which
are both unique and very simple are described in the July 1986 issue of TUGboa t
[2]. Details of all of the I N R S T ~ kernel features are described in [3]. Section 6
contains some observations.

2. I N R S ~ Features

INRST~_~ really consists of a number of complementary packages. The packages,
all relatively independent, are as follows:

• the I N R S T ~ macro package kernel. This includes all the facilities needed
for

o section and chapter heads,

o lists,

o e a s y tables,

o f loa t ing figure and table insertions,

76

o footnotes,

o automatic generation of table of contents, list of figures, and list of
tables,

o automatic numbering of equations, section heads, etc.,

o symbolic referencing of equations, sections, etc.,

o optional margin notes to aid in keeping track of symbolic references,

o automatic generation of citation lists (IEEE style only) without any
preprocessing,

o a multicolumn format with a relatively simple method for column
balancing,

o a 8ubdoeumen t feature for building large documents in pieces.

o an \ e v e r y . . . for almost all features. This allows for some simple
document style changes. For example \ e v e r y f o o t n o t e will define
a token list that is invoked whenever a \ f o o t n o t e is produced.

• additional packages for special forms. The modular form of the kernel allows
for modifications of what is inside and out. At the present these include

o a verbatim style using t y p e w r i t e r fonts for such things as program
listings,

o a several document styles including a <<PAPER STYLE>>, <<BOOK
STYLE>>, <<REPORT STYLE>>. Some of these are rather specialized.

o TEXGraph , a graphics system for drawing figures and inserting ex-
ternal figures. This uses the graphics primitives of the QMS Laser
printer and is to be enhanced quite soon to write P o s t S c r i p t [4]. It
is ins ide rather than outside the TEX system.

o memo macros i n c l u d i n g graphics for letterhead,

o slide making i n c l u d i n g graphics for letterhead,

• templates for various styles. This makes their use as easy as filling in blanks
and is very important for making the system accessible to unskilled users.

• M u l t i l i n g u a l T~X [5], an e x t e n s i o n to TEX , that allows for language
dependent hyphenation tables and hyphenation of accented words while
using ordinary fonts.

• INRSprint, a printing program for the QMS Laser printer that does font
management and interprets graphics s p e c i a l s .

I N R S T ~ may be viewed from several perspectives.

• At the user level, it is a set of procedures that augment the P l a i n macros
supplied with TEX. These aid the author in building a document by making

77

shuffling of sm:h things as sections, equations, .figures, and tables sufficiently
painless that they will be done. It helps the secretary/typist by making it
easier to respond to changes. To work most effectively, the author, at the
pencil input level, should be aware of the power of the system.

At the document formatting level, parameters and features are available to
modify various spacings, headers, footers, etc.

At the document design level, the various internal formatting forms are
available i n d e p e n d e n t l y of the housekeeping functions which are used for
the automatic generation of section, equation, and figure numbers, or such
things as the table of contents.

3. E n g l i s h a n d F r e n c h - - T o g e t h e r

I N R S ~ X supports both English and French document preparation, and is easily
extendable to other languages. It does this through the generation of messages and
various forms from within the I N R S ~ X kernel and its various additional packages.
Through the T ~ [5] extension of TEX , language dependent hyphenation of words,
with and without accents, is allowed. An example of a kernel form language
variation is the change from "Chapter" to "Chapitre" when a \chapterhead is
called in French rather than in English. \ e n g l i s h v e r s i o n calls the English forms
and \ v e r s i o n f r a n c a i s e the French forms.

4. L i s t s

To obtain a flavor of the philosophy and style of INRST~X, this section will dis-
cuss in some detail the list capabilities of I N R S ~ t X. P la in supplies two commands
for lists, \ i t em , and \ i te ra i tem, that create list items with indentations of one
and two times the paragraph indentation in force when they are called. Thus a
\ p a r i n d e n t f 0 p t will totally destroy a list. INRSTF[X supplies a complete set of
commands for three levels of lists. It does not have any special forms for numbered
or non-numbered lists but rather lets the user do this as necessary using standard
commands and counters. It is easy to add these using TF_tX definitions as neces-
sary (see Section 4.2 for an example of an automatically numbered list). Unlike
LATEX , the depth of a list is explicitly stated. Thus it is possible to start with a
\ b e g i n s u b l i s t rather than a \ b e g i n l i s t if s u b l i s t indentation is required or
even to skip a level while inside a list. Lists and their associated items can appear
in either vertical or internal vertical mode. They also work in multicolumn format
and in conjunction with modifications of the page margins.

The commands \beginlist, \beginsublist, \beginsubsublist or the ap-
proved abbreviations \ b l , \ b s l , and \ b s s l start lists and matching \ e n d l i s t ,
\ e n d s u b l i s t , \ e n d s u b s u b l i s t , or the abbreviations \ e l , \ e s l , and \ e s s l

78

terminate them. Mismatches cause error messages. As each \ b e g i n . . . \ e n d . . .
pair form a group, it is possible to change the fonts or any other parameter and
tha t change affects only the present group and all of its internal groups. This is
an important benefit of designating lists instead of list items. All items in a list
are introduced by \listitem <list_item_mark> followed by the actual body of
the list. As usual there is an approved abbreviation \ l i .

The main text of a list is indented a fixed amount according to the value of
the \ l i s t i n d e n t , \ s u b l i s t i n d e n t , or \ s u b s u b l i s t i n d e n t as the case may be.
The list item herald, if it exists, is placed the value of the \ l i s t i t e m m a r k s i z e to
the left of the indented list. All spacings between list items and between lists are
controlled by parameters that are specified in the I N R S T ~ default file. In fact
this file has all the parameters, including those set in P l a in , in one place.

I N R S ~ X also supplies three token lists \ e v e r y l i s t , \ e v e r y s u b l i s t , and
\ e v e r y s u b s u b l i s t whose contents are emptied inside the list group every time
the corresponding \ b e g i n . . . l i s t is called. These may be used for changing the
list indentations, fonts, or individual item skips. Anything done in an outer list
is of course valid in the sublists. Thus \ e v e r y s u b l i s t = { \ e i g h t p o i n t k i t } will
force all sublists to be set in \ e i g h t p o i n t with a default of italic. There are three
additional token lists \ e O v e r y l i s t , \ e O v e r y s u b l i s t , and \ e O v e r y s u b s u b l i s t
for the document designer?.

One of the most useful list macros is a \samplemark{<example>} which sets
the size of the present list indentation to that of <example> plus lea. This makes
it quite simple to create labeled lists or compensate for a number such as [1467]
during a very long bibliography. The list commands can be, and are, used as the
basis of specialized lists such as citation references.

An example of small but important INRST~X feature is the protection of list
item baseline skips from external influences. INRST~tX has a \ spac ing{<s i ze>}
macro where <size> is in number of lines and may be fractional. It turns out that
lists look rather terrible if they are double spaced. An \ e v e r y l i s t may override
this protection if desired.

4.1 An Example List

Things to note about lists are

• There are three levels of lists, lists, sublists, and subsublists.

o A list, sublist, subsublist starts a group. The group localizes the effect of changes.

& List items are indicated in the same way at all levels.

INRSiI~X protects its internal macros with an ©. However the ~ always appears as the second
letter and never replaces any letter. This makes conversions between internal and external
forms rather easy and readable.

79

o Display mat hematlcs is acceptable within lists. This is an example.

~z e- kZ
,<~ (i~-~) a~

It can also have a second paragraph that is a part of this item. This paragraph
could even have a narrowed portion

Wise men lay up knowledge but the babbling of a
fool brings ruin near. P r o v e r b s C h . 10 , V s . 14

It is possible to tighten the list here but it would not do much good as this is
the last subitem.

Note: The Note: herald is so large that it sticks into the actual list item.
This can be seen on this line.

, T h i s is a m o r e n o r m a l size he r a ld .

T h e p r e v i o u s l is t is p r o d u c e d by

\beginlist

\li \bullet There are three levels of lists, (kit lists),

(kit sublists), and (kit subsublists).

\beginsublist

\eightpoint

\li \circ A list, sublist, subsublist starts a group.

The group localizes the effect of changes.

\li \clubsuit List items are indicated in the same way at

all levels.

\li \diamond Display mathematics is acceptable within lists.

This is an example.
$$
\oint_{\vert z\vert < 1) (e~(-kz) \over (l-z)) dz

$$

It can also have a second paragraph that is a part of this

item. This paragraph could even have a narrowed portion

\beginnarrowtext .Sin

\tenpoint kit \noindent

Wise men lay up knowledge but the babbling

of a fool brings ruin near.

\bf Proverbs Ch.~10, Vs.~14

\endnarrowtext

\li \bullet It is possible to tighten the list here

but it would not do much good as this is the last

subitem.

\endsublist

80

\li {\bf Note:} The {\bf Note:} herald is so large that it sticks

{\bf into} the actual list item. This can be seen

on this line.

\li \star This is a more normal size herald.

\endlist

4.2 A N u m b e r e d Lis t

This automatical ly numbered list

1. You shall have no o t h e r gods before me.

2. You shall not make !or yourse,, ,~n.v r4raven image.

3. You shall not take the name of the Lord yore God in vain.

4. Remember the sabbath day, to keep it holy.

5. Honor your father and mother.
Exodus Chap. 20, Verse8 3-!3 (Abridged)

is actually produced by

\newcount\li stnum

\def\lin{kadvanceklistnum by 1 \li \the\listnum. }

\everylist = {\listnum=O}

\beginlist

\tightenlist

\lin You shall have no other gods before me.

kiln You shall not make for yourself any graven image.

\lin You shall not take the name of the Lord your God in vain.

kiln Remember the sabbath day, to keep it holy.

\lin Honor your father and mother.

\hfill {kit Exodus Chap. 20, Verses 3-13 (Abridged)}

\endlist

The \tightenlist is used to reduce the inter list item spacing since nearly all of

the items are one line. Note the blank line before the reference. List items may
be several paragraphs long.

This list is so short that it is probably just as easy to hand number it us-
ing \ l i <number>. The listing could have been made alphabetic by replacing
\ t h e \ l i s t n u m by \ a l p h a b e t i c { \ t h e k l i s t n u m } . Whether the construction is
necessary depends upon the frequency of the lists. Usually bibtigraphic lists are
automatical ly numbered.

81

5. Text and Graphics - TEXGraph

INRST~X has been recently extended to include a graphics capability and the
merging of external plot and figure files. Documents may now be produced without
any cutting or pasting of any sort. The importance of this capability cannot be
overestimated. There is seldom a final version of any document. Although TEX was
initially accepted because it allowed for the typesetting of mathematical equations,
it has now become essential because it produces comple te documents.

The graphics merging is accomplished through TEX and the interpretation of
\ s p e c i a l s by the INRSprint printing driver rather than through a special exter-
nal page building system. The \ s p e c i a l s interpretation capabilities of INRSprint
are quite modest. Unlike LATEX, which creates its pictures using small graphics
elements in special fonts, INRST~X uses graphics primitives supplied by the laser
printer. This results in more compact and versatile drawing and can grow as laser
printer capabilities grow. The current version of TEXGraph assumes a QMS laser
printer and writes specials in its QUIC [6] language. This limits the capabilitie,~ to
vector graphics, circular arcs, and various pattern fills. A new version will write
in Pos tSc r ip t [4] and is anticipated to have many more primitives available -
ellipses, splines~ and arbitrary rotations appear to be possible.

5.1 TF~Graph Capabil i t ies and Requirements

TEXGraph allows for the inclusion of plot files and the overlay of text as necessary.
This text overlay may be printed either horizontally, vertically, or both, thus allow-
ing for the labelling of axes with TEX fonts. Angular text printing is not available
in QUIC. From the user view all that is required to input a plot file, centered on
the page with the appropriate space left is to use \centerplotfile{<filename>}.
The <filename> file will have been previously converted to QUIC and will have
been preceded by a comment that gives TEXGraph the plot size information re-
quired to leave the appropriate space. TEXGraph reads only the size information
from the plot file and produces error messages if the file is not found or the size in-
formation is not present. Neither case stops the processing. A file may be inserted
at an arbitrary place in the text by using
\beginTeXgraphics ~. starts TEX Graph -- abbreviated \btg
\inc ludef ile{<filename>}
\endTeXgraphics ~ ends TEX Graph -- abbreviated \etg
In fact the \ i n c l u d e f i l e { < f i l e n a m e > } will insert a file at the present location
while creating graphics.

To insert a plot file, INRSprint must be able to interpret the file name and
insert the contents of that file at its present location.

5.2 TEXGraph Primit ives

TEXGraph has a number of capabilities that range from primitive to powerful.

82

0

O

Drawing primitives consist of commands for circles, circular arcs, line vec-
tors, vectors with arrowheads, and erasing vectors, and fill patterns.

There are commands for changing whether the distances specified are to be
interpreted absolutely, with respect to an origin or relatively with respect
to the present position.

There is a command to change the (pen)width of the drawn lines and to
change the interpreted scale of the units of distance.

There is a command to change the default units. However, since arbitrary
scaling of units is allowed, this command is of limited use except for those
that visualize distances in different dimensions. The dimensions available
are those available in INRST~X.

There is a "graphical segment" which can be placed at any specific location.
Distances inside a graphical segment are interpreted with respect to the
segment origin. The distances inside a segment may be either relative or
absolute with respect to the segment origin. There is a segment scale which
allows for segments to be scaled relatively with respect to an overall graph.

Text, with all the capabilities of INRST~_rX may be written either horizon-
tally or vertically (up) on the page. This allows for the such things as
labelling graphs.

TEXGraph attempts to keep track of the maximum extent of a graph. These
are available after the graph is terminated in the variables \hgraphs ize
and \vg raphs i ze . \hgraphskip and \vgraphskip will cause a horizon-
tal or vertical skip of the appropriate graphsize.

All of TEX's definitional capabilities are available. These can be used to
replace a complex structure by a single command or, although it is frowned
upon, to change the surface syntax of TEXGraph.

Explicit use of grouping through {}, or \begingroup, \endgroup pairs
is not allowed. This will foul up the positional record keeping inside.
Groups may be produced only through the use of segments, namely the
\ beg in segmen t . . . \endsegment pair.

5.3 Simple ~ G r a p h i c s

TEXGraph will allow for rather sophisticated graphics. You can use the definition
capabilities of INRSTEX to create libraries of symbols and neat forms for future
use. The units of the dimensions are implicit, but changable. The default is inches.
Thus h: <number> is the distance in the horizontal (to right) and v : <number> is the

83

distance in the vertical (down) direction. The locations are absolute distances with
respect to an origin in the upper left hand corner. Thus directions in TEXGraph
and TEX are identical.

The following diamond box is a simple example

and was p u t i n place with
$$

\ c e n t e r g r a p h {

\btg

\move h :0 v : . 5

\ l v e c h : . 5 v:O

\ l v e c h : l v : . 5

\ l v e c h : . 5 v : l

\ l v e c h :0 v : . 5

moves penup to (0,.5)

draws a line to (.5,0)

\move h : - . 5 v : . 2 5 \ a v e c h:O v : . 5 Z l e f t arrow v e c t o r

\move h : l v : . 5 \ a v e c h : l . 5 v : . 7 5 Z r i g h t arrow v e c t o r

\ t e x t r e f h:C v:C Z s e t s t he r e f e r e n c e p o i n t dead c e n t e r in t e x t .

\move h : . 5 v : . 5

\ h t e x t {$ \ sum_{i= l}^n \ rho_n$} Z h o r i z o n t a l t e x t box

\ e t g }
$$

The command \ c e n t e r g r a p h { < . . . >} uses the information about plot size to cen-
ter the graphics horizontally and to leave enough room vertically. Note that there
are no angular restrictions on the arrow vectors. Arrowhead types supplied are

5.4 Text in G r a p h s

Text may be written either horizontally (left to right) with \ h t e x t { < t e x t > } or
or vertically (upwards) with \ v t e x t { < t e x t > } . These commands \ h t e x t and
\ v t e x t create a TEX \hbox . The reference point for this box, specified by
\ t e x t r e f h:<L C R> v:<T C B>, where one of the choices in the < . . . > specify
one of the nine reference points shown below:

84

h:L v:T h:C v:T

h:C v:C
h:L v:C ~¢" h:R v:C

h:L v:B - ' - " h:C v:B h:R v:B

The existence of these nine choices greatly facilitate the user placement of text in
graphics.

The commands for producing this diagram will be found in Appendix A.

5.5 Circles, Arcs and Fills

TEXGraph uses the circle, arc, and fill commands of the QMS Laser printer produce
curves. The commands are
\icir r:<radius> ~, the <radius> is in the default dimensions

\larc r:<radius> sd:<starting degrees> ed:<ending degrees>

the starting and ending degrees are INTEGERS

\fill p:<number> ~ <number> between 0 and 24 ... each different

An example of a use of arcs and fill is given below. The fill pat tern is purposely
chosen so that the underlying lines would show.

The version with the black fill is given below. Note that the "sloppy" arcs have
disappeared.

This logo is given by
$$

!

85

\ c e n t e r g r a p h (\ b t g
\ u n i t s c a l e .2
\ l a r c r : 2 . 8 s d : 0 ed:45
\ l a r c r : 5 . 1 s d : 0 ed:45
\move h :0 v :0
\ l v e c h : 2 . 3 v :0
\ l v e c h : 2 . 3 v :2
\move h :3 v : 3 . 2
\ l v e c h : 5 . 1 v : 3 . 2
\ l v e c h : 5 . 1 v : 5 . 1
\ l v e c h :0 v : 5 . 1
\ l v e c h :0 v :0
\move h : 2 . 8 v :0
\ l v e c h : 5 . 1 v :0
\move h : l v : l
\fill p:20 ~ b l a c k fill

\ e t g }

r e d u c e s t h e scale
two a r c s
note degrees not critical

$$

5.6 Advanced TEXGraphics and Segments

The most important advanced feature of TEXGraph is the graphical segment.
These are delimited by \ b e g i n s e g m e n t . . . \ endsegment pairs and are used to
create graphical items that can be placed at any specific location in a graph.
This capability, combined with TEX's ability to create definitions allows for the
creation of libraries of symbols. The following is a list of some of the important
points concerning segments:

• A segment is a group and is defined by a \beginsegment... \endsegment

pair.

• Each segment has a segment reference point. This is the location in the
enclosing segment or \ b t g \ e t g , which is really just a special segment.

\unitscale <number> affects the present segment and all enclosed seg-
ments unless they have their own \ u n i t s c a l e . A \ u n i t s c a l e may be
changed at any time within a segment.

\ s e g m e n t s c a t e <number> affects the present segment and all enclosed seg-
ments unless that segment is protected by an \ a b s o l u t e s c a l e . The seg-
ment scales accumulate.

• The actual scale used for interpreting position numbers is the product of
all of the enclosing segmentscales times the presently active unitscale.

86

The segment reference position is the location when the the \beg insegment
is executed. Absolute positions within a segment are relative to the segment
reference position. Relative positions are relative.

5 . 7 C o m m e n t s o n T F ~ G r a p h

TEXGraph is very powerful, and creates magnificent looking output. With the
increased capabilities of a P o s t S c r i p t printer it will probably do anything that is
required. The major difficulty is that it is just not very much fun to use. What is
needed is an nice graphics interface that allows for interactive building of graphics
much like MacDraw [7] but with the ability to bet ter control text placement and
to use TEX fonts. In most instances a "rough sketch" to "finished form" capability
is what is really wanted. TEXGraph is a long way from that. However its output
is of such high quality that it is used in preference to MacDraw by fussy people.

6. S o m e O b s e r v a t i o n s

From some perspectives, both I N R S ~ and LATEX are severely lacking. Under
no circumstances can it be said that TEX is fun. Users need a TEX/Graphics
enviroment that allows quick feedback so that they have confidence that what
they are doing is correct. The document preparation features of I N R S T ~ or
LATEX must not be dropped by the wayside when designing such a visual interface.
Although they may not be terribly important to a typist, they are very important
for an author. It is incredibly reassuring that a reference to an equation is not
suddenly going to become incorrect just because of some textual permutation.
These are the features that are at the heart of I N R S T ~ and must be retained.

A second area of grave concern is error messages. Most users, other than
TEXperts tend to ignore them because they can make no sense out of them. It
is not that they are without sense. It is rather that they require a degree of
knowledge that is probably only available to the macro de~,igner. Perhaps faster
visual feedback will reduce the distance before detection of an error and enhance
extrication.

This paper has given a slice of INRST~X as used at INRS-Tdldcommunications.
This slice was meant to give a flavor of the system and its capabilities rather than
be an exhaustive description. For such a description it is necessary to consult
various technical reports [3, 5, 8]. Better yet, play with it.

References

1. L. Lamport , I~TEX , Addison Wesley, New York, 1985.

2. M.J. Ferguson, "Table Making with INRST~X", TUGboat , Vol. 7, No. 2,
July 1986.

87

3. M.J. Ferguson "The INRST~X Reference Manual", INRS Technical Report
No. 84-19, 1984

4. Adobe Systems Inc. P o s t S c r i p t L a n g a u g e Re fe r ence Manua l , Addison
Wesley, New York, 1985.

5. M.J. Ferguson, "A Multilingual T~_tX" , Tech. Report No. 85-14, INRS-
Tdldcommunications, April 1985.

6. QMS Inc., Q U I C P r o g r a m m i n g L a n g u a g e , Vers ion 3, Publication No.
1720460.0100, QMS Inc, Mobile, Alabama, Oct. 1984.

7. Apple Computer Inc. M a c D r a w , Apple Product No. M1509, Apple Com-
puter Inc., Cupertino, Calif., 1984.

8. M.J. Ferguson, "An Introduction to TEXGraph" , Tech. Report No. 85-07,
INRS-Tdldcommunications, Feb. 1985.

A p p e n d i x A. C o m m a n d s for t h e Tex t Re fe r ence Box

This appendix give the commands used to produce the text reference box in Sec-
tion 5.4.

\ de f \b l{ \h t ex t {\bullet} }
\def \ t ref{\beginsegment

\ t e x t r e f h:C v:C
\ lvec h : l v:O \bl
\ lvec h:2 v:O \bl
\ lvec h:2 v: .5 \bl
\ lvec h:2 v : l \b l
\ lvec h : l v : l \b l
\ lvec h:O v: l \b l
\1vet h:O v : . 5 \bl
\ lvec h:O v:O \bl
\move h : l v : . 5 \bl

\endsegment}
\def\tlabels{\textref h:R v:C Zleft hand labels

\htext{ h:L v:T } \ivec h:.2 v:O \avec h:.6 v:.4
\move h:O v:.9 \htext{ h:L v:C } \avec h:.6 v:.9
\move h:O v:l.8 \btext{ h:L v:B } \Ivec h:.2 v:l.8

\avec h:.6 v:l.4
\textref h:L v:C Zright hand labels
\move h:3.2 v:O \htext{ h:R v:T } \ivec h:3 v:O

\avec h:2.6 v:.4
\move h:3.2 v:.9 \htext{ h:R v:C } \avec h:2.6 v:.@
\move h:3.2 v:I.8 \htext{ h:R v:B } \ivec h:3 v:l.8

88

\ avec h : 2 . 6 v : 1 . 4
\ t e x t r c f h:C v:B ~ Center Top
\move h : 1 . 6 v:O \ h t e x t { h:C v:T } \move h : 1 . 6 v : . 0 5

\ avec h : 1 . 6 v : . 4
\ t e x t r e f h:L v:C ~ Center Center
\move h : 2 . 0 v : . 7 \ h t e x t { h:C v:C } \ l v e ¢ h : 1 . 8 5 v : . 7

\ avec h : l . 6 v : . g
\ t e x t r e f h:C v:T ~ Center Bottom
\move h : l . 6 v : 1 . 8 \ h t e x t { h:C v:B } \move h : 1 . 6 v :1 .75

\avec h : 1 . 6 v : l . 4
}

S$
\centergraph{\btg

\arrowheadsize I:.08 w:.02 \arrowheadtype t:O
\tlabels
\move h:.6 v:.4 \tref
\etg}

$$

ASHTF_~: A n I n t e r a c t i v e P r e v i e w e r for T F ~

o r T h e M a r v e l l o u s W o r l d o f ASHTF_tX

Laurence GALLOT

INRIA SOPHIA-ANTIPOLIS
Route des Lucioles

06560 Valbonne, France

A b s t r a c t

This paper describes an interactive multi-window previewer for TEX. This tool is
built on a screen handler calIed ASH, that is part of Brown Workstation Envi-
ronment developed at Brown University. Today, AsHTF~ runs on SM90 with the
Numelec Bitmap screen and on SPS9.

1. I n t r o d u c t i o n

Using TEX for typeset t ing all our documents, we have required tools to help
us in this work. We have adapted to our computers the Brown Workstation
Environment, BWE, which makes it possible to design graphical applications
easily. With BWE we have realized an interactive multi-window previewer for
TEX that we present in this paper.

We first explain what a previewer is and why we need such a tool for displaying
documents typeset with TEX. Then we describe the specific functionalities that are
desirable. Next we give the details of the implementation of our previewer, that we
have named A s H ~ , and finally we describe the problems we have encountered,
and how they were solved when possible.

2. D e s c r i p t i o n o f a P r e v i e w e r

2.1. W h a t is a p r e v i e w e r a n d w h y d o e s a TEX u s e r n e e d s u c h a too l?

When you prepare a document using a typeset t ing system, such as TEX , the
initial work consists in typing a correct source file on a s tandard alphanumeric
terminal. Next the TEX program is run on this file to obtain an intermediate file
called a dvi file, and finally by interpreting this dvi file with a driver output is
generated. Notice that the driver used depends on the type of the output device.

90

While the source file consists of the text and of command strings for the type-
setting, one doesn' t see very precisely what the final document will look like.
Thus very quickly, one wants to see output . The most usual and simplest way
of looking at the result consists of output t ing the document on paper. Unfortu-
nately this method is often slow and may be expensive. For instance, there is
often only one printer for several workstations; to use the printer files must be
transfered to the appropriate machine and then wait for the output . If there are
many users for the printer, this may take awhile. Futhermore pages on such a
(laser or electrostatic) printer are very expensive - - we have computed that a
page on our laser printer is about one Franc, which is at least three times more
expensive than photocopying. It is expensive and cumbersome to output 10 draft
copies before gett ing the output just right.

One often wants to look only at a part of a page. For example, for designing
complicated equations or arrays, it may take many tries before the output is
correct, or sometimes the page layout is to be checked. While it is not reasonable
to get hardcopy output for each modification on the source file, it would be nice
to be able to look at the document quickly without output t ing it on paper.

Since personal workstations with high resolution display have recently become
widely available, one would like to view the TEX output directly on the screen.
This method makes the preparation of a document easier and less expensive. A
tool that enables the user to look at his document without output t ing it on paper
is called a previewer. A previewer allows the user to look at what he will get
on the paper. The layout on the screen is exactly the same as on paper. The
only difference comes from the resolution of the display device, and the result
on the screen may look less beautiful than the hardcopy version. Although the
lower resolution of the display (around 100 dots per inch for the Numelec display
against 300 do ts per inch or more for a laser printer) results in the characters
being less beautiful, it seems very sufficient for preparing a document. The user
can quickly see the results and make modifications.

2.2. W h a t d o e s t h e user w a n t f r o m a p r e v i e w e r ?

Clearly the user wants to look at any page in the document and does not
necessarily want to view the pages in sequential order. However, when viewing
a page it is often the case that the next or previous page of the document is the
one the user wants to look at next. Thus the previewer should provide facilities
to get the next or the previous page easily while still providing the freedom to
see any arbi t rary page. Also he may want to look at more than one page at the
same time on the screen - - for side-by-side comparison. Perhaps the pages to be
compared even come from different documents. Thus, the previewer must handle
requests for multiple pages and multiple dvi files.

Depending on the output device and the size of the pages in the user's docu-
ment, it may not be possible to fit the whole page on the b i tmap screen at once.

91

Thus, the user must be able to "scroll" through the page, both in the horizontal
and vertical directions. That is, if the page is too tall and cannot appear totally
on the screen, the user needs to be able to move the page up or down quickly to
see a different portion of the page.

A multi-window system makes it possible to realize these needs. Each page
viewed is in a window (a portion of the screen delimited by a border). If there
are several windows (pages) on the screen, they may overlap one another. If the
multi-window system used is powerful enough, the pages can be moved around. If
there are many pages (windows) on the screen, it is necessary to quickly move the
page to be viewed to the forefront so that it is no longer obscured by the others.
It should be possible to change the size of a window: if one wants to keep visible
only a small part of a page, one can resize the corresponding window and move
it in a corner of the screen where it remains visible. The user can also choose
the number of pages that he wants to see on the screen at the same time. For
example, he may choose to only have one or two windows; pages to be viewed are
put in one of these windows. However, he may have a window on the screen for
each page he views - - perhaps a bit cluttered for a 15-page paper. But the user
has control of creating and destroying windows.

3 . I m p l e m e n t a t i o n o f A S H T F . ~

We now examine how we have implemented the previewer facilities of the previous
section. To realize our previewer we needed a multi-window system. We used the
Brown Workstation Environment (BWE) that we have adapted for use on the
SM90 workstation with Numelec bitmap screen and on Bull SPS9.

3.1. P r e s e n t a t i o n o f B W E

BWE is a workstation environment developed at Brown University, for the
design of interactive graphical applications. This environment consists of different
libraries, and provides facilities for using powerful hardware components such as
high-resolution bi tmapped displays and locator devices (e.g. a mouse) with a
minimum amount of effort. In particular, it allows input management (using
both the s tandard keyboard and a locator device), sophisticated graphical output
to multiple overlapping windows, and text and graphics editing.

The main feature of this system is its portability; it can be adapted to ma-
chines running a Unix system and including a high-resolution output device
(monochrome or color) and any locator device (mouse, light pen, data tablet,
etc.) Portabili ty is obtained by coding in the C language for Unix and by care-
fully isolating all the machine dependencies in virtual device interfaces for input
and for output. Adapting BWE to a machine requires only writing these inter-
faces.

92

At Brown the system has been developed on Apollo workstations, and then
adapted to the Sun workstation. At INRIA Sophia, we adapted it for SM90
workstation with the Numelec bitmap display and SMX system, and for SPS9
computer running Unix. Our objective here is not to describe in detail each
component of the BWE system (for more information refer to the BWE docu-
mentat ion [1].) However we present here the ASH library which makes it possible
to implement our previewer for TF~.

3.2. P r e s e n t a t i o n o f A S H

ASH is a low-level screen handler completely independent of the machine and
of t h e output device used. It allows the user to create, modify, and manipulate
bitmaps and representations of these bitmaps on the display. The main data
structure manipulated by ASH is the window. An ASH window is a virtual bitmap
on which the application draws and outputs text. A window can be displayed on
the screen in full, in part, or not at all.

The main part of the work of the screen handler ASH consists in computing the
visible area associated with each window and displaying the border that delimits
the visible part of each window. Windows are maintained by ASH in two ways.
First, they are maintained in a tree-hierarchy as they are created. The screen is
the window associated with the root of the tree-hierarchy, and each window is the
child of the current window at the time when it was created. For each window,
its visible part is entirely contained in the visible part of its parent. The second
way ASH maintains the windows is to have for each a list of its children ordered
for the display. The ordering of the children is such that any window above a
given one may obscure this window, however, no window below it in the list may
obscure any portion of the given window.

For drawing and outputt ing text, each window has its own set of graphic at-
tributes: current color, text color, background color, combination rule (mode for
combining bits: or, xor, etc.), fill pattern, line style, and font. These attributes
can be changed at any moment during the execution of the application program.

3.3. D e s c r i p t i o n o f t h e o u t p u t s c r e e n

The screen of an AsHTEX session consists of windows for outputt ing the pages,
menus, and a dialog window for the output of messages and keyboard input.

3.3.1. T h e o u t p u t w i n d o w s

As we have seen before, pages are almost never fully displayed on the screen
because of their size. In fact, once a page as been computed (as an array of bits),
it is stored in a virtual bitmap, and partly displayed on the screen in a window.

The windows we have implemented 10ok like Macintosh windows. They have
a header, in which the dvi file's name and the number of the associated page are

93

written. The user can move the window by clicking in the header. At this time a
ghost (rectangular box) appears around the window and follows the moves of the
mouse until the mouse button is released. The last position of the ghost indicates
the new position of the window. In the left corner of the header there is a small
black square tha t allows the window to be destroyed.

The windows have two scrollbars. One scrollbar is vertical, on the right border
of the window, and it permits vertical scrolling of the corresponding page in the
window. The second scrollbar is horizontal, on the bot tom border of the window,
and permits horizontal scrolling. The fact that the entire page exists somewhere
in memory (in a virtual bitmap) makes it possible to scroll very quickly and makes
the scrollbar very useful.

A scrollbar consists of a rectangular area, with a square but ton at each end. In
each button there is an arrow indicating a scrolling direction, and clicking in one
of these buttons allows for a step by step (incremental) scrolling. In a scrollbar,
there is also a small rectangular area (called a thumb) representing the part of
the page tha t is visible in the window; the size of the thumb is proportional to the
visible part of the page and the position of the thumb in the scrollbar represents
the position of this visible part within the total page. To jump to another part
of the page, one clicks on the thumb and then positions it (actually an outline
or "ghost" version of the thumb moves) within the scrollbar; releasing the mouse
but ton results in moving the thumb over the ghost and the corresponding portion
of the page appears in the window. Depressing a mouse but ton in the scrollbar
but not on the thumb results in the thumb moving by a given step and the page
scrolling accordingly until the but ton is released or the designated point lies within
the thumb.

A small square area, in the right bot tom corner of the windows allows the
resizing of the windows. When a button of the mouse is depressed in this area, a
ghost appears around the window and grows (or shrinks) following the moves of
the mouse until the button is released. The last size of the ghost becomes the :new
size of the window. When the window is resized, the header, scrollbars, thumbs,
and the visible part of the page are resized accordingly.

3.3.2. The m e n u s

In AsHTEX we use two kinds of menus: a permanent one and two pull-down
menus. The pull-down menus are accessed through the permanent menu. The
permanent menu has an horizontal format and lies in the top left corner of the
screen; it has five buttons named stop, refresh, new dvi, new frame, and new page.

The first but ton is used for stopping the program. Click this but ton and a
three-but ton pull-down menu appears. These give three choices clear (to stop
and clear the screen), leave (to stop and leave the screen as it is), and cancel (to
remain inside ASHTEX). Note that when the stop button is chosen if the mouse
but ton is released outside of the pull-down menu, the command is also cancelled.

94

The but ton named refresh is used to refresh the screen. This is useful, for
example, to remove parasitic messages from the system or from another user.

The third but ton of the permanent menu, named new dvi, is used to load a
new dvi file. When this but ton is chosen the program asks for the name of the dvi
file to load, and for the number of the page that one wants to see first. If the user
asks for loading the same dvi file (with the same name), the program asks him
if he really wants to reload the same file. Note that pages can only be selected
from the current dvi file. Thus alternating between pages from different dvi files
requires tha t the dvi file be loaded at each switch. This is because AsHTEX uses
a very simple driver for dvi files. Thus information is only maintained about the
"current" dvi file. Switching between dvi files requires some star t -up overhead to
load the information from the dvi file and read the corresponding fonts.

The next but ton, named new frame, is used to get a new window on the screen.
The user has to give a point on the screen, where the top left corner of the new
window will appear, and the number of the page that he wants to see in this new
window. By default, we have chosen to create two windows at the beginning of
the program. The user can destroy one window if he desires, or he can create
some windows (with the new frame) but ton if he wants to works with more than
two windows. In this (default) setup the user would see each new page requested
appear alternating in the two windows; thus the screen always has the last two
pages asked for.

Finally~ the last but ton, named new page, is used to change the current page.
When this but ton is clicked, an other three-but ton pull-down menu appears. The
content of the header of this menu is the name of the dvi file and the number of
the current page. The three choices offered by the menu are: next (page following
the current one), previous (the previous one), and other (to get any page from the
document) . Clicking the other but ton, the user is asked to give the number of the
page he wants. If the chosen page is not already in a window on the screen, it
is computed using the current dvi file and writ ten in some window. The window
whose contents is the requested page is moved to the top of the screen, and this
page becomes the current one. This implies in particular that the number of this
page will appear in the header of the pull-down menu, when calling new page.

3.3.3. T h e d i a l o g w i n d o w

The last component of the output screen of AsHTEX is the dialog window.
It is a rather small window that appears in the right top corner of the screen
when keyboard input is needed. It is used for communicating with the user, for
example, sending error messages or requesting the name of a dvi file or what page
to show.

3.4. Computing and displaying the pages.

When a page that isn't already in a window on the screen is requested this page

95

has to be computed and then copied in a window. The width of the window is
determined by the width of the page in the dvi file, while the height is computed
so as to be in the "golden ratio" with the width. Computing a page is obtained
by using a driver that interprets the dvi file and generates an array of bits. For
AsHTEX we use the same driver as for our Canon printer. Because of the different
resolutions of the printer and of the bitmap, the fonts used differ but the main
part of the computat ion of a page is the same. When the called page is computed,
the program has to choose which window of the screen will be associated with the
new page. For that purpose we use a virtual memory managing technique: the
chosen window is the least recently-used one. The program maintains a list of the
windows displayed on the screen, when a window becomes the current window,
it becomes the first element of the list and pushes the other windows behind it in
the list; the window chosen to show a new computed page is the last of the list.
If there is only one window on the screen, for each page computed, the contents
of this window is overwritten.

4 . T h e p r o b l e m s a n d o u r s o l u t i o n s

In this section we describe the various problems that we have encountered in
developing ASHTF_ ~ . The main problem was one of speed because a tool such as
a previewer has to be fast if it is going to be used at all. The second one was a
problem of input management because using mouse input is rather difficult; the
programs quickly become complex and hard to maintain. The third problem was
a fonts problem because of the unusual resolution of the Numelec bitmap.

4.1. Speed

The previewer has to run quickly in two ways: first the modifications to the
screen such as moving a window, scrolling, or popping a window have to be done
just when they are requested by the user. Likewise ghosts and thumbs must move
smoothly. Pages should not seem to be built from small rectangles. Secondly the
pages have to be computed by the driver quickly enough, so that the user doesn' t
wait too long when asking for a new page.

The first point is handled through ASH which is a very powerful screen handler.
It uses a lot of memory (keeping a copy of each virtual bi tmap) but makes it
possible to modify the screen very quickly. For the second point we had to improve
the performance of the driver, particularly the part of the driver computing the
pages. To start with, the driver was only used for output t ing on the printer,
where speed wasn ' t so important . But when the user asks for a new page in an
interactive previewer, it is not possible to let him wait more than a few seconds
before the page appears on the screen. By modifying crucial parts of the code the
computat ion t ime of a page on the SM90 was decreased from more than 14 seconds
to approximately 4 seconds. On a more powerful workstation, incorporating a

96

68020 rather than a 68010 microprocessor, it is clear that this time will drop
below 1 second. This work was performed by J. Incerpi and F. Montagnac and
will be reported elsewhere.

4.2. Input m a n a g e m e n t

To resolve the problem of input management in a graphical user interface,
some languages exist that can help the programmer to describe interactions us-
ing a mouse and that generate C code which can be integrated in the graphical
application. The language that we have chosen to help us for managing input
in AsHTE~ , is a general synchronous programming language named ESTEREL,
developed by G. Berry [2,3] at CMA in Sophia Antipolis. We haven't used ES-
TEREL for the entire input management of AsHTF_~, but for a complex part of
it: the scrollbars. Berry has described the behavior of a scrollbar in ESTEREL
and his system has generated a C automaton that we have integrated in AsHTEX.
This method has been useful in many ways. First of all the C code generated
is compact and optimized. There is only one ESTEREL program for both the
vertical and horizontal scrollbars. This method also provides modularity: the
input management is completely separated from the rest of the program. And
finally, to modify the behavior of the scrollbar, it is much easier to modify the
ESTEREL program that more closely reflects the real behavior than to modify a
big automaton implemented in a conventional language.

4.3. Miss ing Fonts

Using AsHTE~ , we have quickly encountered the problem of missing fonts. For
the resolution corresponding to the Numelec bitmap (around 100 dots per inch)
we have a library of 118 dots per inch fonts but it is not very complete. This
library contains all the fonts for TEX without magnification but if a document
has a magnification command then some fonts may be missing and the driver
will not be able to compute some pages of the document. If the magnification
commands are removed from the TEX source file, the document can be displayed
on the screen through AsHTEX. However this is not a satisfactory solution because
removing the magnification commands from the TEX file changes the layout of
the paragraphs and pages. The output of the document in ASHTEX will be very
different than the output on paper. Not to mention that the document would
have to be run through TEX another time to put back in the magnification desired
before outputting on paper. Clearly having a full set of fonts for the device is the
best solution but barring this we would like to see output that is as close to that
on paper as possible. Retexing the file with and without magnification is not the
solution. Thus our previewer offers an option to take the dvi file generated from
a TEX source file with some overall magnification, and display it using the default
(non-magnified) fonts. This works in general since if a font exists at all it is in this
non-magnified size. This seems to be a reasonable solution since the page layout

97

and line breaks are those that will appear in the hardcopy version, it is just that
the characters are smaller. Note the spacing within the lines is proportional to
the fonts used so that proofreading and checking layout is not hindered.

5. C o n c l u s i o n

At this t ime AsHTEX runs and is used on SM90 workstation and Ridge computer.
We are planning to move it to a Sun workstation in the near future. To move
AsHTEX to a different environment first requires that ASH be adapted to this
new machine. We've already mentioned that ASH's design makes this rather
easy to do. As well, the code for the mouse management, which is very machine
dependent, would have to be adjusted. AsHTEX is written, however, in a very
modular way. Our previewer consists of modules for computing pages from the
dvi file, for the scrollbars, for the graphical layout of the screen, and for handling
keyboard and mouse input. This not only makes porting AsH Y to another
machine easy but could allow using the previewer environment for manipulating
different objects. That is, rather than displaying pages of TEX output , we could
manipulate digital pictures using most of the components of our system.

Many people have used A s H Y in a daily fashion to prepare documents. The
user-community that helped in defining its functionalities seems satisfied with
the current compromises. The performance is considered acceptable, although
improvements in this area are always welcome.

The cycle for writing documents typeset with TEX still has three s e p a r a t e
steps: writing source file, then running TEX , and finally displaying the document.
This is not entirely satisfactory. There is actually no interaction between the
output on the screen and the source file. From the source file to the displayed
output , one has to run TE~X to get the dvi file and while previewing a part of
the output (a word, a line, an equation, or a page) there is no way to get the
corresponding string in the source file. Using an multi-window previewer such as
AsHTEX , the user ideally wants to pi~k something on the screen and from within
another window modify the corresponding string and see the newly adjusted out-
put without leaving AsHTEX. We aren't as yet able to create such a powerful tool
for the TEX user. Although we can see very well how desirable it would be.

B i b l i o g r a p h y
1. The Brown Workstation Environment Documentation, Brown University, Oc-

tober 1984.
2. G6rard Berry, Programming a Digital Watch in ESTEREL, CMA ENSMP,

Sophia~Antipolis, February 1986.
3. Georges Gonthier, The ESTEREL v2.1 Language ReferenCe Manual, CMA

ENSMP, Sophia-Antipolis, March 1986.

A L A N G U A G E T O D E S C R I B E F O R M A T T I N G D I R E C T I V E S

F O R S G M L D O C U M E N T S .

Huu LE V A N - Elisa T E R R E N I

Department of Computer Science
University of Milan

Via Moretto da Brescia, 9 Milano - Italy

A b s t r a c t

SGML is a standard proposed by ISO for documents description based on gene-
ralized markup technique. The formatting process of a SGML document could
consist in singling out markup elements and inserting formatting directives into
the document in accordance with the class of the markup elements themselves,
using a suitable map table.

This paper will present an implementation of an environment of SGML do-
cuments production, emphasizing a special language, METAFORM, for the map
table construction.

1. I n t r o d u c t i o n .

For several years now authors have usually been submitting their manuscripts
to publishing houses in hard copy form. Publishers, if provided with some elec-
tronic systems able to format and to print out the document, had to retype the
manuscripts in the input form of the formatting program.

The continual increase of personal computers with their own user-friendly word
processors lead authors to prefer generating their manuscripts eletronically. This
on one hand makes the publishers' typing job easier; however, on the other, it gives
them new problems to resolve. One of the principal problems is related to the
physical form of manuscript disks or magnetic tapes, which requires a conversion
in readable form for the destination machine. Usually it is resolved by means of
interface software or devices [FER85].

Another problem that deserves particular attention regards information con-
tained in the file transferred. This information could be of different types: the
textual part of the manuscript without formatting codes; the DVI file for some
typesetting system; the output format of some word processor . . .

In the case of the DVI file it is necessary, on one hand, that the publisher has
a specific driver able to understand it and that , on the other, the author has a

99

specific formatter able to produce the DVI file itself. This means publishers must
have on hand different drivers if they want to accept different types of DVI.

In other cases it requires a reformatting process of the manuscript. This could
consist of inserting formatting codes and typesetting information in the manu-
script in accordance with the formatter system avalaible to the publishers. In
this process it is not easy to recognize from the manuscript file the text portion
belonging to the specific object class (e.g. title of document, paragraph, title of
appendix . . .) to which to associate the formatting functions.

This difficulty could be diminished if the manuscript has been described using
some kind of generic coding. Generic coding is a data management technique
capable of describing the logical structure of text data file. It uses generalized
markup, which identify each element of the document associating with it a logical
class. A document described with generic coding could assume the following
asp ect:

: section
This is the first section. It contains:

: list
: item

1) The introduction . . .
: item

2) The description of . . .
: endsection

where lines representing codes are started by ":".

Using generic coding, processing and formatting instructions are external to
the text, which therefore is not dependent on any particular application [GCC78].

Generic coding, in various forms, is already in use today. There are implemen-
tations of generic coding for particular environments, such as the Langton Com-
pany for technical documentation production [WES85] the UK Government Prin-
ter and Publisher for the UK Government Legislation [HMS85], as well as more
general-purpose ones, such as GML of IBM [IBM76a] and GenCode of GCCA
[GCC78].

Recently, generic coding has become argument of international organizations
for standardization work. ANSI began to define a generic coding based on IBM's
DCF GML. Then the work is continued by ISO, which named the proposal stan-
dard as "Information Processing Systems - Programming Languages - Text In-
terchange and Processing - Standard Generalized Mark-up Language", for short
"SGML". It is a draft international standard and as such is waiting for approval
by member bodies [SMI85], [GOL81].

For a publisher who has on hand a particular formatter the reformatting pro-
cess of a manuscript described using generic coding consists in singling out text

100

elements by means of markup and in inserting formatting command sequences
into the file in accordance with the class of the markup itself.

It is natural to think of performing this step automatically. An approach could
be to use a map table containing the correspondences between markup and control
sequences of the formatter itself. Then the step could consist in:

1) Recognizing generic codes from the manuscript file.
2) Retrieving the corresponding control sequences from the map table.
3) Generating the output file with these control sequences and text portions of

the manuscript file.
4) Submitting the output file to the formatter system, which will yield the final

layout.

Naturally, we can create different map tables for different formatter systems.

The approach considered determines a rigid association between generic codes
and control sequences of formatters. In some situations we need a flexible associa-
tion between them. For example, what happens if we need to associate with the
same code two different sets of control sequences, one for the "title" of the book,
the other for the "title" of the appendix ? From this situation we note that the
action to undertake for a generic code depends on its position in the document; in
other words it depends on the current status of the document. Therefore, rather
than a rigid association, the mapping elements should be described by means of
some sort of more flexible language.

This paper will present a current implementation of a system for the prepara-
tion of documents conforming to the generalized markup technique proposed by
the standard SGML. The presentation puts emphasis on a language for the con-
struction of the map table in an attempt to resolve the above mentioned problems.
The language is capable of expressing, by means of statements and control struc-
tures, the processing to associate with various SGML markup elements present
in a manuscript, in relation of its current status.

2. S G M L .

SGML [ISO85] is a standard language proposed for text description. It considers
a document as an element composed of others elements. The relationships among
these elements constitutes the document structure. SGML provides a coherent
and unambiguous syntax for describing that structure; in other words it is a
formal expression of document markup.

One of the main objectives of the standard is to render the marked document
both usable by humans and processable by the full range of word processor and
text processing equipment. Consequently, the standard does not depend on ap-
plication systems or devices [ADL85].

10t

SGML describes documents using markup called generic identifiers (GIs). They
are inserted among portions of text identifying them. Moreover, every element
can be described, not only by GI, but also by attribute values. In this way two
text portions can be considered different, even if identified with the same GI,
when they have two different attribute values.

We report an example of a document described using SGML

1 <!ELEMENT article (title, author, paragraph *)>
2 <!ELEMENT (title I paragraph) (#CHARS)>
3 <!ELEMENT author (#CHARS) type (principal l co-author)>
4 <article>
5 <ti t le>
6 The SGML standard proposed by ISO.
7 <author type -- "principal">
8 Le van Huu
9 <paragraph>
10 This is the first paragraph . . .
11 </paragraph>
12 </ar t ic le>

Leaving out the syntax of SGML, we emphasize some significant aspects of the
above document. Lines 1, 2, 3 establish the logical document structure; i.e., they
define the model of every GI (the GI "article" can contain "title", followed by the
GI "author", which in turn is followed by "paragraph", repeated 0 or more times,
etc . . .) . They are known as "markup declaration".

The remaining lines identify text elements, marking them by using GI (e.g.
article, author . . .) and possibly also attribute values (type="principal"). They
are known as "markup descriptive".

From the example we note that describing a document using SGML consists
of two phases:

a) Definition of the document type, i.e., its logical structure

b) Markup of the text according to the structure defined above, creating a physical
structure of the document.

But these steps are not enough to provide us with the final page out. It is
necessary to submit the document to some formatting process. To achieve it one
approach could be to create various "profiles" for various document types. Every
profile contains the association between the GIs and the formatting procedures.
This approach, similar to that used by the SCRIBE system [REI80], and GML
di IBM forces publishers to build programs with these particular formatting pro-

102

cedures. But generally every publisher has his own formatting system and tends
not to want to change. On the other hand, one of SGML's objectives is to permit
every formatting system to process document described with SGML elements.

Therefore, a second approach could be considered. It consists in transforming
the" SGML document into a source file for every formatter wanted, then to sub-
mit it to the formatter itself. In this way, publishers could use again their own
formatting system to procure the final layout of manuscripts. [LEV85a]

In the next section we will present the proposal for a system of SGML document
production based on the second approach mentioned.

3. The proposed system.

The system comprehends: [LEV85b]

• A SGML parser that processes documents containing SGML markup. These
documents can be generated by an ordinary text editor or come from a speci-
fically designed interactive document input system based on manipulation of
windows to represent document elements [LEV85c].

The parser produces an intermediate file containing different information
relating to the physical structure of the document. The main pieces of infor-
mation contained in the intermediate file for every GI of the document are:

a) name of GI
b) name and value of attributes associated
c) pointers to the relating text portion in the SGML source file

Other information is not so important and we do not report in this paper.

• A parser module of a special language, called METAFORM, defined purposely
for the map table specification. The map table contains, for every formatter
and for every GI, a set of METAFORM statements. They specify processing
to undertake when the corresponding GI is matched in the intermediate file.
The output of the parser is a set of pseudo codes (p_codes) which simulate the
functioning of a hypothetical stack machine [WIR81].

* An interpreter module which subsequently executes these p_codes. It generates
as output the source file for the formatter to which the METAFORM program
refers, in accordance with the order of GI present in the intermediate file.

3.1 The language M E T A F O R M .

As previously mentioned, processing to be associated with each GI is specified
in the map table, using a suitable language. METAFORM is a special-purpose
language, defined purposely to describe formatting directives to be inserted in a

103

document. From this comes its name: METAlanguage for FORMatt ing problems.
The syntax of the language to some extent draws inspiration from language C
[KER78] and from the standard STPL (Part Five - Formatt ing and Compositions
Functions) [ISO84].

In this section we will briefly describe some relevant aspects of the META-
FORM language.

Logically a METAFORM program can be organized following this structure:

BEGIN_GI gi_nameA
BEGIN_ATT attribute_name_l

block of statements associated with the attr ibute attribute_name_l
of the generic identifier gi_name_l

END_ATT

BEGIN_ATT attribute_name_2
block of statements associated with the attribute attribute_name.2
of the generic identifier gi_name_l

END_ATT

° * ° ° . ° * * , o . . ° ~ °

END_GI
BEGIN_GI gi_name_2

BEGIN_ATT attribute_name_l
block of statements associated with the attr ibute attribute_name..1
of the generic identifier gi_name_2

END_ATT

BEGIN_ATT attribute_name_2
block of statements associated with the at tr ibute attribute_name_2
of the generic identifier gi_name_2

END_ATT

As we can see, METAFORM instructions for a GI are included between the
keywords BEGIN_GI and END_GI. These instructions are divided in different
blocks in accordance with the different types of its attributes.

In using the BNF formalism, the structure of a METAFORM program is the
following:

104

<program> ::= {<macro definition>} {<generic id block>}.
<generic id block> ::= BEGIN_GI <gi name>

{<at t r ibute block>} END_GI
<at t r ibute block> ::= BEGIN_ATT <at t t r ibute name>

<sta tements> END_ATT
<gi name> ::= <identifier>
<at t r ibute name> ::= <identifier>
<identifier> ::= <le t ter> {<let ter>} I {_} [{<number> }

The first section of the program is reserved to the macro definition. Every
macro can have parameters and its body can contain every type of METAFORM
statements.

The constructs "attribute name" and "gi name" represent names of attributes
and generic identifiers. The construct "statements" represents all statements of
METAFORM. This will be presented in greater detail later on.

In comparison to a structured programming language, the couple BEGIN_GI
and END_GI could be considered a procedure at level 0. We will call it "GI
procedure". Consequently, statements between every couple of BEGIN_ATT and
END_ATT constitutes a procedure just one level below. We will call it "attribute
procedure".

Not always does a GI have attributes; therefore, there would be no "attribute
procedures" associated with it. To avoid this, every "GI procedure" always con-
tains a standard "attribute procedure", called "SYS.ATT", to be executed at the
end of the execution of all other ones.

Every METAFORM program refers to a specific formatter. It must be compiled
by a parser, which produces a set of p_codes, ready to be interpreted by the
interpreter module. Using it, the formatting process of a SGML document could
take place in the following way.

Once decided which formatter will process the document and, consequently,
which METAFORM program to be executed, the intermediate file is scanned
by the interpreter. When a GI occurs, the interpreter searches forward for the
related attributes. For every attribute matched, the set of the corresponding ME-
TAFORM instructions, (or, better yet, the p_codes generated), is executed, just as
the in the case of a procedure call. METAFORM I /O instructions usually access
to the SGML source document, by means of pointers present in the intermediate
file, to retrieve texts which are to be worked on. Execution of METAFORM in-
structions for an at tr ibute will produce as output a part of the source file for the
formatter selected.

At the end of the intermediate file scanning, the entire source file is generated.
Then it is submitted to the formatter, which will compose it generating the final
pages out. To better explain the above concepts we will show an example of the

105

use of METAFORM language, even if many of its elements are still unknown.
Let us suppose to select TEX as formatter and to define every document in the

most sample way as follows:

1 \ input basic
2 \hsize 3in
3 \vskip lin
4 \centerline { title of document }
5 \vskip 30pt
6 \centerline {\sl author name }
7 \vskip 2.30cm
8 \parindent 10pt
9 paragraph text

10 \par \bye

From this we can single out some formatting elements to associate with logical
elements of the document, such as the head part (lines 1, 2, 3) that specifies
the format of the document, the title to be centered (line 4), the author name
to be centered and written in the slanted 10-point font (line 6), the paragraph
to be indented with 10 points (line 8). These elements could be represented by
SGML GIs as "document", "title", "author", "paragraph". Moreover, the GI
"document" could have an attribute "type" with two possible values: "sample"
and "complex". On the basis of them we can decide to select the format, for
example, "basic" or "math".

A METAFORM program which is able to generate the above TEX document
from a SGML one could be:

01 BEGIN_GI document
02 BEGIN.ATT type
03 IF $ATTVAL = = "sample" THEN
O4 BEGIN
05 WRITE ("\input basic");
06 WRITE ("\hsize 3in");
07 WRITE ("\vskip lin");
08 END
09 ELSE
10 BEGIN
11 WRITE ("\input math");
12 WRITE ("\hsize 3in");
13 WRITE ("\vskip l in ') ;
14 END
15 END_ATT
16 END_GI

106

17 BEGIN_GI title
18 BEGIN__A_TT SYS.ATT
19 WRITE ("\centerline {");
20 READTRANSFER 0; - - title
21 WRITE ("}');
22 WRITE ("\vskip 30pt");
23 END_ATT
24 END_GI
25 BEGIN_GI author
26 BEGIN_ATT SYS.ATT
27 WRITE ("\centerline {\sl");
28 READTRANSFER 0; - - author name
29 WRITE ("}');
30 WRITE ("\vskip 2.30pt");
31 END..ATT
32 END_GI
33 BEGIN_GI paragraph
34 BEGIN_ATT SYS.ATT
35 WRITE ("\parindent 10pt");
36 READTRANSFER (); - - paragraph text
37 WRITE ("\par \bye");
38 END_ATT
39 END_GI
40.

On the other hand the processing of the following SGML document

<document type= "sample" >
<ti t le>

An example of METAFORM
<author>

Le van Huu
<paragraph>

This is a very sample example.
< /document>

by the SGML parser will cause the production of an intermediate file containing,
as mentioned, information about elements of the document, such as name of GIs,
name and value of attributes, pointers to text portions present in SGML source
file. Precisely, the content of that file is the following:

document, type = sample, title 35/22, author 69/10, paragraph 95/30,

107

where the couples of numbers 35/22, 69/10, and 95/30 refer to SGML source
document. They represent respectively the start position and the number of
characters contained in the text portions of "title", "author", and "paragraph"
elements.

The interpreter module, scanning it, will produce "rEX document as reported
above. In fact it begins to recognize the GI "document" and its attribute value
from the intermediate file. This causes the activation of the attribute proce-
dure "type" of the GI procedure "document" of the METAFORM program. The
condition of the IF statement is true because the current value of the attribute
($ATTVAL) is "sample", therefore the lines

\ input basic
\hsize 3in
\vskip 1in

are written in output (see instructions 5, 6, 7).
Then the recognition of the GI "title" from the intermediate file causes the

execution of the attribute procedure SYS.ATT of the GI title (because title has
no attribute value). This, first of all, writes the line (see instruction 19)

centerline {

into the output. Now it is necessary to add the title of the document. This is
performed by the procedure READTRANSFER, which accesses to the SGML
document by the pointers specified in the intermediate file (value 35), reads the
text portion and transfers it into the output file, generating the line

An example of METAFORM

Then instructions 21, 22 of the METAFORM program cause the final lines

}
\vskip 30pt

to be generated.
The processing of the remaining statements of the METAFORM program fol-

lows the same scheme.
Now we will describe some main elements of the language.

3.1 .1 Variable .

Variable of a METAFORM program can assume either string or real type. There
is no declaration instruction. In fact, a variable is implicitly declared when it
is referred for the first time, precisely when it appears on the left hand of an

108

assignment statement. Moreover, the type of a variable can be changed during
the execution of the program, in accordance with its current value.

There are two principal categories of variable:

1) user variables, the names of which are defined by the user (METAFORM pro-
grammer). They are local variables of an "at t r ibute procedure".

2) system variables, the names of which are defined in advance by the language.
They are recognizable by the character "$" in front of their name. System
variables are divided, in turn, in ~wo categories:

2a) document status variables: they represent the status of the document being
examined. In fact, they refer to information about:

• the GI contained in the intermediate file. For example:

- GINAME: the name of the GI just matched in the intermediate file.
- GIPARENT: the name of the GI that contains the current one.
- GIOCCUR: the number of occurrences of the current GI in the text.

• the a t t r ibute of the current GI. For example:

- ATTNAME: the name of the a t t r ibute just matched in the intermediate
file.
- ATTVAL: the value of the current at t r ibute.

• the current line of the document. For example:

- LNLENGTH: length of the line.
- LNWORDS: number of words contained in the line.

• the current word. For example:

- W D L E N G T H : length of the word
- WDCUR: the word just read from the text.

The last two types of variables mentioned allow the programmer to examine
the current word and line of the document. The need to use them comes from
the fact tha t some formatters use insert control sequences among particular
characters of a word or among particular words of a line.

The values of document status variables are usually updated automati-
cally by the interpreter. For example, every t ime that a GI is read from
the intermediate file, the new value is assigned to the variable GINAME.

109

Statements of an attribute procedure can refer to them to know the values.
These statements can also assign to them new values, even if this could cause
incongruencies among document status variables.

2b) formatting variables: They represent parameters for the formatting process.
Principal variables of this category concern the page. For example:

- PGHEIGHT: the height dimension of the page
- LEFTMARGIN: the value of the left margin
- RIGHTMARGIN: the value of the right margin
- CURINDENT: the current indentation

Formatt ing variables are managed by the programmer. They are useful
to prepare the formatting directives to be written into the output file.

3.1 .2 IF s t a t e m e n t .

The structure of the IF statement can be expressed by the following BNF con-
struction:

<if s ta tement> ::-" IF <conditional_expression> THEN
BEGIN {<sta tements>} END
[IF <conditional_expression> THEN

BEGIN {<sta tements>} END
ELSE BEGIN {<sta tements>} END

<conditional_expression> ::= <relational condition>
I <logical condition>
I <inclusion condition>
[<belonging condition>

The relational condition and the logical condition do not differ much from those
of an ordinary programming language. They are expressions linked by relational
operators, such as <, < = , >, > = , <> , = = , and by logical operators such as
AND (&), OR ([), NOT.

The last two conditions deserve, instead, more attention. They can be expres-
sed by:

<inclusion condition> ::= <str ing>IN<variable> [<variable>IN<variable>
<belonging condition> ::= <gi value> OF <gi value>
<gi value> ::= <str ing> I <variable>
<variable> ::= <identifier> I $ <identifier>
<str ing> ::= " <character> {<character>} " [

' <character> {<character>} '

The inclusion condition allows the test of the presence of a substring in a word.

110

For example, the statement

IF "oe" IN $WDCUR THEN . . .

searches the string "oe" in the current word of the text (stored in $WDCUR).
This could be useful when the formatter reserves some particular processing to the
characters "oe' . For example, let's suppose that the formatter selected is TEX. If
it is necessary to specify "\oe" to produce the French ligature "ce" the substitution
of the string "oe" by "\oe" can be expressed by the following METAFORM
statements:

IF "oe" IN $WDCUR THEN
BEGIN

WRITE ("\oe");
END

that will write into the output file the string "\oe" in place of "oe' . As we will
see shortly the same result can be achieved by using a standard procedure which
performs the same substitution for the entire text.

The belonging condition regards the status of the document; precisely, the
condition of the current GI. It tests the relation of that GI, respecting the others
matched up till then. Particularly, it tests if the current GI belongs to some other
GI. The need to have this type of condition arises when it must associate different
processes with the same GI, depending on which GIs it belongs to. Let's examine
the following SGML document:

<document>
<cover>
<t i t le>

TEX and METAFONT - New Directions in Typesett ing
< / t i t l e>
<:chapter>

This is the first chapter.
< / chap te r>
<appendix>
<t i t le>
APPENDIX A
< / t i t l e>

We can note that the GI "title" belongs both to the "cover" element and to the
"appendix" element. Therefore, if we want to process the title of the cover in a
different way, respecting the title of the appendix, we can specify the alternative
directives using:

111

IF $GINAME OF "cover" THEN
BEGIN

statements 1
END
ELSE
IF $GINAME OF "appendix" THEN
BEGIN

statements 2
END

3.1.3 W H I L E s ta t ement .

The BNF construct of the while statement are:

<while statement> ::= WHILE <loop condition>
BEGIN {<statement>} END

<loop condition> ::= <relational condition>
<logical condition>

The loop condition is evaluated before every loop; as long as the loop condition
is true, statements of the WHILE body are executed.

3.1.4 A s s i g n m e n t s ta tement .

As previously mentioned, variables of the program take on the type of their current
value. In fact, in the following example

A = 10;
B = "This is a string";
A - B ;

the variable A changes its type from integer to string, after the assignment of
the third line. Naturally, values of variables which constitute operands of an
expression must be integer or real. The control of the type congruency of operands
in an expression is performed during the execution of the program, not at; its
compiler time.

3.1.5 Func t ions .

It is not possible to define new functions in a METAFORM program. In compen-
sation the language is provided with a set of useful standard functions.

A function call follows these constructs:

<function call> ::= <function name>
({parameter} {, parameter})

<parameter> ::= <variable> I <string> I <numbers>
<function name> ::= <identifier>

112

Standard functions regard primarily:

• The current word of the text, such as:

- SUCC: it returns the following word of the current one
- PRED: it returns the preceding word of the current one

• The s tatus of the text. In this context we intend "text" as the text portion of
the document associated with a GI. These functions are:

- EOT: it is a boolean function to test the end of the text.
- EOL and EOW: they refer to the end of the current line and word.

• The status of a GI, in relation to another one which contains it. For this
purpose, the language is provided with the following function

OCC (gi_l, gi_2);

which calculates occurrences of the GI gi_l within the text portion of the GI
gi_2. For example, let's consider the following SGML document structure:

< ! E L E M E N T section (paragraph * , note)>

which allows the "section" element to contain zero or more "paragraph" ele-
ments. The aspect of a document which respects that s tructure could be

<sect ion>
<pa rag raph>

This is the first paragraph
< / p a r a g r a p h > - - end of the first paragraph (*)
<pa rag raph>

This is the second paragraph
< / p a r a g r a p h > - - end of the second paragraph
<parag raph>

This is the third paragraph
< / p a r a g r a p h > - - end of the third paragraph
< / sec t ion>
The function OCC, called in the following way:

OCC ("paragraph", "section");

(*) characters " - - " is a SGML notation which marks the beginning of a comment
line.

113

when the second GI "paragraph" is matched in the document , will return the
value 2. It indicates that up till that point two paragraphs are specified in
the section. This allows us to distinguish one paragraph from another, so that
it is possible to associate a different set of processing with every paragraph ,
following the order in which it appears in the section.

• The status of the attributes. Sometimes we need to verify if an at tr ibute
associated with a GI has been specified in the current document. The boolean
function ACTIVE takes care of resolving this necessity. In fact, using

ACTIVE (attribute_name);

it is possible to verify if the at tr ibute "attribute_name" is present in the text
portion of the current GI.

• Auxiliary functions. Such as: ISODD, to test if the value of an integer variable
is odd; T O U P P E R function, to transform lower characters of a string to upper
ones; CHAR to obtain a sequence of characters extracting them from a string;
e t c . . .

3.1.6 P r o c e d u r e s .

As in the case of functions, a METAFORM program cannot define new proce-
dures. It is possible to use only s tandard procedures provided by the language.
All of them, except the SUBSTITUTE procedure, regard I /O operations. We re-
member that a METAFORM program can read data only from the file containing
the text portion of GIs; i.e., the SGML source document. Moreover, it can write
only on the file that constitutes the source file for the formatter . Consequently,
I /O procedures do not need to know the name of the file on which they work.
Let's examine them in detail, together with the SUBSTITUTE procedure.

1) READ: The READ procedure call follows this syntax:

<read call>
<cont ro l>
< argument >

::= READ (" <control> "
::= %c] %b] %p
::= <variable>

, <argument>)

The procedure reads data from the SGML source document according to
the format specified by the "control" parameter , depositing the result in a
variable indicated by the "argument". For every call the READ procedure
gets a character from the text if the control parameter is "%c", otherwise it
selects a word. In this context a word is intended as a sequence of characters
bound by blanks, if the control parameter is "%b", otherwise, by punctation

114

characters and blanks.
Some examples of the use of the READ procedure are:

READ ("%b", A);
READ ("%p", B);

If the line to read is

i.e. this is an example.

then the first instruction will read entire string "i.e." storing it in A, while the
second one will stop at the first punctuation character. Therefore, it assigns
to B only the character "i".

2) READTRANSFER: In some cases the text portion of a particular GI does not
need to be examined but only written just as it is on the output file. The
READTRANSFER procedure performs this function. It copies the whole text
portion of the GI on the output file without making any modifications.

3) WRITE: It is considered the most important procedure because it permits the
correct production of the source file for the formatter selected. Its syntax is
described as follows:

< write call> ::= WRITE (" <control> "
{ , <argument>})

The procedure writes values of various "argument" parameters on the output
file under the control of the "control" parameter. This parameter, bound by
quotation marks, is of several types, such as:

a) Constant string: It constitutes the value to be written.
b) Format specifications: Each of them refers to an element of the argument

list and indicates the writing modality of the argument itself. The format
specifications are:

%s: whole value of the corresponding argument is written

%c: a next successive character of the corresponding argument is writ-
ten. For example, in the following program:

A -- "Text";
WRITE ("%c", A);
WRITE ("%c", A);

115

the two write instructions produce, respectively, characters "T" and
"e". This type of format control is useful when it is necessary to
manipulate characters of a word before writing them in output.

4) SUSPEND and RESUME: Sometimes, for some formatters, a command line
contains parameters which refer to information about the text portion which
it will process. For example, to obtain n centered lines of text using NROFF
format ter [OSS76] we must specify the command " . c e n ' , where the parameter
n indicates the number of lines to be centered, before the n lines themselves.
In this case, the person who is generating the source text for NROFF can
behave in the following way. He/She writes the line ".ce n" with the value of
n undefined. Then he/she writes all lines of the text he /she wants to make
centered, counts them and comes back to update the value of n. These same
steps could be executed by a METAFORM program, as we will see shortly,
using the SUSPEND and RESUME procedures.
The SUSPEND procedure call, with the following syntax:

<suspend call> ::= SUSPEND (<identifier>)
produces an undefined value for the variable specified as parameter and writes
it in the output file. Subsequently, when the value of that variable becomes
known, the RESUME procedure call, with the following syntax:

<resume call> ::= RESUME (<identif ier>)
can be specified. The procedure will come back to the point of the output
file where the variable has been suspended and will update it with its current
valu e.

In this way, the METAFORM program to resolve the problem of centered
lines in NROFF could be:

linecount = 0;

W R I T E (".ce ") ;
SUSPEND (N) ;

WHILE NOT EOT

BEGIN

- - The procedure writes string ".ce"
- - The procedure writes an undefined

value for N and re-marks that
point in the output file.

- - For all characters of the text
portion of GI.

READ ("%c", charoftext);
- - Reads a character and stores it

in charoftext.
IF (charoftext = = EOL)
BEGIN

linecount = l inecount+l ;
- - Update count of lines.

END

116

END

N -- linecount;
R E S U M E (N);

W R I T E ("%c", charoftext);
- - Writes a character stored in
- - charoftext;
- - End of text portion. The variable
- - linecount indicates the number

of its lines.
- - N is updated.

In this case the R E S U M E procedure comes back searching for the point where
N is suspended in the output file (the line ".ce ') and updates the line with the
current value of N, i.e., the line count.

5) SUBSTITUTE: Sometimes a specific word of the document should be treated
in a particular way by the formatter; for example, when it represents a logo
to be printed with a special font. Then it is necessary to subst i tute that word
with the name of the font, for the entire document. This operation is performed
using the procedure

S U B S T I T U T E (from, to);

which replaces all strings corresponding to the parameter "from" with the
string contained in "to".

3.1.7 Macros.
It is possible to define macros with formal parameter to be called later in any
point of the program. Macro definition must be inserted at the head of the
M E T A F O R M program. It follows this syntax:

<macro definition> ::= DEFINE <macro name> <paramete r pa r t>
<macro b o d y >

<paramete r pa r t> ::= 0] (<formal parameter>
{, <formal parameter>})

<macro b o d y > ::= BEGIN_MACRO {<s t a t emen t>} END_MACRO
<formal parameter> ::-- $1 [$2] $3 [$4 I $5] $6 [$7 [$8 [$9
<macro name> ::= <identifier>

There are at most nine formal parameters for a macro. Statements of macro
body can contain these parameters, which will be updated during the macro ex-
pansion. These statements can be of any type, including, a macro call instruction.

The syntax of a macro call is the same of the procedure call. When a ma-
cro is called, its body gets expanded with formal parameters replaced by actual
parameters, according to the order of their specification.

117

4. Conclus ions .

The system for SGML document production described in this paper offers
some advantages for authors and publishers. In regard to the authors, they are
relieved from typesetting problems; therefore they are able to concentrate their
attention on the content of their manuscript. These advantages derive from SGML
features. In the environment proposed authors could transmit to publishers the
SGML source documents, or, as more probable, the intermediate file, if they have
on hand a SGML parser.

These rites could be transmitted to all publishers, independently of the kind
of formatter program they have on hand. Publishers have only to execute the
interpreter module to process the intermediate file received and to generate the
source file for their formatter. If the document that they receive does not corre-
spond to any structure of GIs present in the map table, the work of the publishers
increases somewhat: they have to add processing instructions in the map table
using METAFORM language.

From what we have described about METAFORM, it seems that the definition
of formatting directives for a document is a long and complicated process. This
is true. But we must not forget that this work is performed just once for all
possible SGML documents. Once the map table is constructed, the METAFORM
executable codes are able to interpret whatever document the user desires.

Despite the fact that METAFORM is a programming language, it is not orien-
ted to expert programmers. It is designed for persons who construct the map
table defining the output format of documents. These persons, experts in compo-
sing and typesetting problems, are notnecessarily familiar with all programming
technique. Therefore, the language tries to be as easy to use and natural[as
possible, even if this makes the language not very powerful. For this reason, ME-
TAFORM is provided with a very small set of statements. Instead, we prefer to
define several useful standard procedures and functions and system variables so
as to make the work of the programmer easier.

The language is at the initial stage of development, even if the construction
of its parser and interpreter has already began. We admit that the language
needs to be completed with many other features. Probably in some situations
METAFORM language is not able to describe the intention of the user. In fact,
the more powerful the formatter, the more sophisticated become the needs of the
user. Moreover, the difficulties in describing formulas, tables, graphics elements
only increase these concerns.

These considerations will be object of our future considerations.

118

References-

[ADL85]

[FER85]

[CCC78]

[COL81]

[HMS85]

[IBM76a]

[IBM76b]

[iso841

[iso85]

[KER78]

[KNU79]

Sharon Adler, Bill Davis: "SGML tutorial" GenCode/SGML Orien-
tation Tutorial (Heidelberg, Germany 3 June 1985).
Peter Ferris, Geeti Granger: "Apollo" in Proc. of the Second Intern.
Conference on Text Processing Systems (Dublin, Ireland 23-25 Oct
1985). Ed. J.H. Miller Boole Press Ltd. Ireland.

GRAPHIC COMMUNICATIONS COMPUTER ASSOCIATION:
"GenCode Primer: A method of Generic Text Markup" ISO/TC
97/SC 18/WG3 N. 157 (1978).

C.F. Goldfarb: ".4 generalized approach to document markup"
in Proc. ACM SIGPLAN/SIGOA Conference Text Manipulation
(Portland, Ore., June 8-10 1981), ACM, NY, 1981.

Her Majesty's Stationery Office: "The use of Generic Coding for UK
Government Legislation" in Proc. of Mark-up '85, the Third Intern.
Conference on Electronic Manuscript Preparation and SGML (Hei-
delberg, Germany 4-6 June 1985).

INTERNATIONAL BUSINESS MACHINES: "IBM SCRIPT/370
User's Guide" IBM Data Processing Division, White Plains, NY,
1976. Order N. SH20-1857-0.

INTERNATIONAL BUSINESS MACHINES: "Document Compo-
sition Facility: GML Quit Reference Summary" IBM Data Proces-
sing Division, White Plains, NY, 1976. Order N. SX26-3719-0.

ISO TC97/SC5 WG12: "Information Processing Systems - Pro-
gramming Languages - Text Interchange and Processing" Eighth
Working Draft, ISO TC97/SC5 WG12 N. 100 (1984 Sept. 01).

ISO TC97/SC18/WG8: "Generic Document Representation Speci-
fication (SGML)" Draft Proposal Intern. Standard ISO/DP 8879/6,
January 1985.

Brian W. Kernighan, Dennis M. Ritchie: "The C programming lan-
guage", Prentice-Hall, Englewood Cliffs, N.J. 1978.

D.E. Knuth: "TEX and METAFONT: New Directions in Type-
setting", Digital Press and the American Mathematical Society,
Bedford, mass, and Providence, R.I. 1979.

[LEV85a]

[LSV85b]

[LEV85c]

[oss76]

[REI80]

[SMI85]

[WES85]

[WIR81]

119

Le van Huu: "TEX and ISO/STPL Standard" in Proc. of the First
European Conference on TEX for Scientific Documentation (Como,
Italy 16-17 May 1985). E d . D. Lucarella, Addison-Wesley Publi-
shing, August 1985.

Le van Huu: "SGML: A standard language for text description" in
Proc. of the Second Intern. Conference on Text Processing Systems
(Dublin, Ireland 23-25 Oct 1985). Ed. J.H. Miller Boole Press Ltd.
Ireland.

Le van Huu: "SGML: features, applications and implementation" in
Proc. of Mark-up '85, the Third Intern. Conference on Electronic:
Manuscript Preparation and SGML (Heidelberg, Germany 4-6 June
1985).

J.F. Ossanna: "NROFF/TROFF user's manual" Computer Science
Tech. Rep. 54, Bell Laboratories, Murray Hill, N.J., Oct. 1976.

B.K. Reid : "SCRIBE: A document specification language and its
compiler', Ph. D. dissertation, Computer Science Dep. Carnegie-
Mellon Univ., Pittsburgh, Pa., Oct 1980.

Joan M. Smith: "The computer and Publishing: an oppurtunity
for new methodology" in Proc. of the Second Intern. Conference
on Text Processing Systems (Dublin, Ireland 23-25 Oct 1985). Ed.
J.H. Miller Boole Press Ltd. Ireland.

A.M. Western: "Multimedia Publication and Generalized Text
Markup" in Proc. of Mark-up '85, the Third Intern. Conference on
Electronic Manuscript Preparation and SGML (Heidelberg, Ger-
many 4-6 June 1985).

N. Wirth: "Pascal-S: A subset and its implementation" in Pascal-
The language and its implementation. Ed. D.W. Barron, John
Wiley & Sons, Ltd 1981.

R E T R I E V I N G M A T H E M A T I C A L F O R M U L A E

Dario Lucarella

Dipartimento di Scienze delIVmformazione
Universit~ degli Studi di Milano

A b s t r a c t

This paper describes a prototype system for storing, retrieving and accessing
mathematical formulae. The proposed environment combines information retrie-
val capabilities with a composition system used to provide formulae representation
and to improve readability of the re~rieved objects. Peculiar problems concerning
manipulation and searching of formulae material are discussed while, on the other
hand, some design issues are proposed for a generalized information retrieval en-
vironment based on concept browsing and structured query processing.

1 . I n t r o d u c t i o n

This paper presents some results and perspectives of a continuing research [Luc84]
experimenting with the problems of retrieving and accessing mathematical for-
mulae.

In a previous paper [Luc85] we have already discussed the compilation of
mathematical formulae dictionaries and the relevance that such tools may cover
both in mathematical research and education. Related works and experiments
can be found with reference to Chemical formulae [Wel83] as well as in the field
of genetic sequences manipulation as reported in [Nan86] where a formulae data
base is searched with artificial intelligence techniques and made available through
a document preparation system conceived as a mediator.

The variable nature of the formulae leads to considerable problems in infor-
mation retrieval both in terms of representing such formulae and searching them
for desired structural features. Three areas have been addressed in this context.
These are the facilities for loading formulae to the system~ the internal represen-
tation of this information and the searching through files of such representations,
given a query represented in similar manner. The aim is to provide the theoretical
and practical basis for implementing a system comparable in use and performance
with those which deal with textual documents [Sal83].

Over the last few years Don Knuth has devised a language capable of defining
every kind of complicated formulae in a linearized way and has embodied it into
the TEX composition system [Knu79].

The TEX language has been adopted to provide an input medium from which a

121

complete and unambiguous representation can be generated. The ability to spe-
cify the graphical two dimensional structure of mathematical formulae by means
of a linearized language creates the opportunity of loading, manipulating and ac-
cessing formulae as ordinary text strings. Items logically related may be retrieved,
viewed and eventually printed after being processed by the TEX system so that
the pictorial layout of the formulae is reproduced. From this point of view, the
current project may be regarded just as en experiment in order to integrate a
composition system with an information retrieval system.

In the following, after a brief remark about the description language, design
issues for the information retrieval envioronment are proposed. Search strategies
are analyzed with reference to the supported facilities: browsing through the
information structure and query formulation with the involved algorithms for
sequence comparison and similarity evaluation. Hence the features are sketched
of an advanced end user interface under development.

2 .Rep re sen t i ng a n d filing fo rmulae

Advances in text processing and essentially in the area of document preparation
systems have enabled the composition of texts including mathematical notations.
Mathematical formulae are text in the sense that they are written in lines, using a
set of characters closely related to classical alphabets but, at the same time, they
differ for the frequent use made of the vertical dimension to express elements such
as subscripts, exponents and fractions and so on. Even if this usage is certainly
not indispensable as it is shown by the linear representation of formulae used
in programming languages, a two dimensional approach becomes advisable if we
want to present the item in a familiar and easily comprehensible way. Obviously,
a pictorial presentation is far more relevant than a written sequence.

Thus the solution to the problem of mathematics typesetting is to design a
language for specifying unambiguosly mathematical notations taking into account
typographical details and notions of typographical aesthetics [Ker75] [Knu79].
Two dimensional formulae must be represented as a one dimensional sequence
of instructions that can be entered easily from every Ascii terminal and then
processed to reproduce the pictorial layout.

In the TEX system, a model has been introduced based on box and glue
primitives to define textual and mathematical objects. Within this framework
every formula may be regarded as a set of boxes pieced and nested together in
various ways. The description language is well known and widespread, so we
assume the reader's knowledge. As a basic source [Knu84] can be referred to.
Some details about the loading of formulae are discussed in [Luc85] where an
excerpt is presented drawn by an implemented formulae dictionary.

Once the problem has been solved of representing formulae as character strings,
the task of searching formulae files can be assimilated to that of searching textual
items [Cro82]. With the previous assumption, we define formulae in analogy with
textual documents as composed of a header and a body. The header contains

122

formatted data representing attributes A0, A1, . . . A,~ where A0 is a special attri-
bute which contains a unique system-wide identifier for the formula and others
A~ attributes denote concepts to which the formula can be related. The body
is a text string providing the internal representation in terms of TEX language.
The implementation of the prototype, here discussed, accommodates two types
of retrieval strategies:

- A c c e s s based on c o n c e p t s

A concept network is managed whose structure will be shown in the next pa-
ragraph. It can be conceived as a generalized tool for helping users to retrieve,
view, classify and interconnect information via trials of association. Facilities are
provided to both users with specific requests and users who have only a vague idea
of what they are looking for. In the latter case, a browsing facility enables the
user to navigate on the concept network and to inspect the formulae appended to
the network nodes. In many cases, such a browsing facility could help to locate
directly the requested formulae without supplying a formal query.

A c c e s s based on f o r m u l a e

This can be conceived as a filtering capability. The user specifies a filter and the
retrieval procedure locates all formulae relevant to the user query and arranges
them according to a rank order. It would be nice to retain the properties of a
sequential scan where formulae are retrieved one at a time. Formulae which do not
qualify according to the filter are skipped while those which qualify are retrieved
and presented to the user in a familiar format so that he can visually check the
objects retrieved. The specified filter restricts the attention to a manageable
subset and formulae within the subset are obtained sequentially.

While the specification of values for formatted attributes can make use of stan-
dard indexes for their evaluation, the specification and evaluation of patterns is
more complicated. We could, however, make use of indexing methods for special
symbols in order to restrict the size of searchable set. The organization is based on
the file structure already reported in [Luc85]. Essentially it is a structure of mul-
tiple indexes on the formulae file where index entries contain the reference to the
identifiers Ao of associated formulae stored in fixed length random blocks. With
this canonical organization, it is possible to get access from multiple views, as
required, considering that the same formula may be related to different semantic
contexts [Bar83].

During the loading phase, the user selects the concepts to which the formula
must be logically attached while the formula body is processed in order to identify
significant mathematical symbols. Such symbols and their location are respecti-
vely used to update the related index.

In the proposed environment, the user can approach the location of the relevant
material either travelling on the concept network or entering the query facility. In
the latter case, the system displays an appropriate template. Optionally, the user
specifies some values for fixed attributes A{, that is concepts, and a pattern P for

123

the required formula by partially filling the template. Values entered for Ai are
interpreted as selection conditions. The pattern P may be any kind of complicated
expression of math symbols and linear strings. Formulae that satisfy the query are
those that satisfy the conjunction of all selections and whose structure is similar
to the one proposed with the pattern P.

In the following these two approaches to formulae retrieval are discussed in
further detail.

3 .Concep t N e t w o r k

An emerging paradigm in the most innovative information retrieval systems is
the management of concepts as entities that enable the users to better qualify
their requests as well as to disclose new associations. This can suggest inspecting
new paths into the information web and locating relevant items [Sho81]. The
attempt is to provide a tool favouring the typical human approach of thinking by
associations [Fre83].

The problem of the structure, presentation and access to a concept base has
been addressed in the field of document management as well as in artificial in-
telligence applications. In the latter case, however, the attention is on reasoning
techniques starting from the contents of the built up knowledge base. As remarked
in [Fin79], the concept base could be organized in graphs with a connecting struc-
ture independent from the knowledge domain and generalized navigation tools.
So offering a versatile and friendly interface that allows the user to follow some
paths or to jump from an item to the other as soon as this is suggested by the
proposed travelling links.

Thus, the main component becomes a concept network. A concept is denoted
by a natural language expression and represents the entity to which a stored
object, in our case a formula, is related. Such a knowledge organization requires
the definition of semantic links among concepts to relate different hierarchical
levels for any given subject and links to relate concepts showing some analogy.

During the interactive phase of query, the aim is to map the submitted request
to the appropriate concept set and to propose it to the user who can inspect the
attached information items or can start an interactive travelling on the network.
With this goal, a dictionary is maintained which contains the keywords occurring
in the expressions denoting the concepts.

The resulting network has a structure very close to the one proposed in [Bar84].
It presents concepts as nodes and three types of relations as edges: broader con-
cept, narrower concept, related concept. The first two links are used to handle
semantic inheritance associations. A class of concepts inheriting properties from
a superior one is linked to that and vice versa. The third type of link associates
concepts exhibiting some relation with each other. Analyzing the terms present
in a query, the system is capable, if the terms belong to the dictionary, to identify
a set of concepts. Essentially this facility allows the user to select a concept and
to enter the network at an appropriate entry point.

124

3.1.Browslng

The idea of browsing has strongly influenced our present approach toward inte-
racting with knowledge [Lec82]. In fact, we want to emphasize the navigation
through a neighborhood of information referencing items by pointing and reco-
gnizing instead of accessing items directly using a known name. We think of the
network nodes as providing choices for the user to select a path through the stored
information.

In the actual implementation a menu driven interface supports the user, star-
ting from the current concept node, to move either to broader, narrower, related
nodes or to inspect attached items. For every concept the surrounding edges are
shown and the first level linked concepts are presented. When the user picks up
a new concept through the listed alternatives, the system switches to the other
semantic region, the new node becomes current and its context is presented high-
lighting the provenience node. This refinement process goes on until the user is
satisfied by the precision of the retrieved concept and he requires the appended
objects. They are presented in a sequential fashion and the last node remains cur-
rent. The current node is the only node presented on the screen and it gives the
actual position within the semantic network. Successive movements are stacked
in order to retain a trace of the followed path and to allow a sort of undo feature
that lets us go back and forth easily or come back immediatly to the mainstream
after having explored a semantically related region.

The same facility is available during the loading phase with the aim of locating
the appropriate set of concepts to which the item must be appended.

Further improvements will be achieved by the introduction of graphical pre-
sentation facilities that are planned in future extensions on the model depicted in
the Caliban system [Fre83].

It is worth while remarking that the previous description has been given with-
out any reference to the particular kind of stored objects. In fact the presented
concept network and browser have been proposed and implemented as a genera-
lized tool to be used in conjunction with text retrieval applications disregarding
the information nature.

In this specific application, as we have discussed in the previous paragraph,
it represents one way for the user to identify and access a class of formulae of
his interest. In our prototype dealing with a collection of formulae in the field of
functional analysis, the concept network and the keyword dictionary have been
initialized with AMS subject classification entries.

4 .F i l t e r ing Faci l i ty

The ability to locate formulae guided by the concepts to which they are related
highlights the semantic context but fails to retrieve formulae which exibit a struc-
ture very close to the searched one. Such considerations led us to implement a
facility for specifying, by means of a template, a pattern of precoordinated TEX

125

control sequences not completely refined. So underlining only some structural
constraints on the features that the retrieved objects have to present.

This task is concerned with the organization of a collection of mathematical
formulae, normalized with regard to representation rules and vocabulary and
with the implementation of a procudere executing the approximate match of an
input pat tern against the whole collection. Usually current techniques in string
matching use algorithms without any regard to the global organization of the
data collection. The proposed approach uses a hierarchical indexing scheme of
the formulae files so that it is possible to reject most of the sequences in the data
collection by first accessing the small index table.

The at tention in this paragraph is on the design and the implementation of
such a filtering capability. We assume that the user will seldom be able to specify
an absolutely tight filter. His specification will reflect his partial knowledge and
will allow more formulae to qualify in addition to the ones he is really looking for.
By a visual check he will finally reach the desired objects. So, if the specification
of the filter is not exact, the implementation need not be exact. It means that, if
the specification of the filter allows a certain percentage of non relevant formulae,
the user will not care if the filter implementation will add some other non relevant
item. The objective is to execute a rapid and less expansive search in order to
eliminate from further consideration those structures which fail to comply with
the s tructural characteristics of the search query.

The user specifies the pat tern with relevant attributes. Attributes are elemen-
tary items used to emphasize the structure of a sequence. The proposed pat tern
can be considered as an expression indicating the co-occurance of some attribu-
tes in some precise position within the sequence. In particular we are interested
in discovering tha t two mathematical formulae expressed with the corresponding
TEX sequence aImost match. The implemented algorithm matches a given se-
quence against the collection and finds all formulae tha t exibit a certain degree
of similarity returning a list of pointers.

4.1.Sequence Comparison
Given the sequences S and T representing linearized formulae, we define a simi-
larity function ~ which produces a real number ~(S,T) in the interval [0.0. . . 1.0]
such as an high value implies an high degree of resemblance [Hal80]. Thus the
similarity problem can be formulated in the following way: given S, find all the
formulae T such that a(S, T) >_ k where k is a predefined threshold or, also, gi-
ven S, find the N formulae T1, . . . TN such that their ~r(S, T~) have the N largest
values. With retrieval based on similarity and a threshold the trade-off can be
controlled varying the threshold in proper way.

In the following we define a sequence as a string tha t can be divided into a
number of discrete units according to a set of rules. We consider the matching
of two sequences S comprising the units sl, s2,.., sm and T comprising the units
Q, t 2 , . . , tn. Assuming tha t the sequences have different lengths, the appropriate

126

correspondence to use is not known in advance but it must be selected over possi-
ble corrispondences that satisfy suitable conditions, such as preserving the order
of the elements in the sequence. Within this framework [Pa185], the overall re-
semblance can be computed as:

o(S,T) - max(re, n) ~ R(8='tJC=)) e [0.0. . . 1.1]

The function R computes the matching between two string units and the func-
tion J(x) is a mapping function such that tj(x) denotes the unit of T which is
mapped on the unit sx of S with the following assumptions:

1) g(x) = 0 if sx is unmapped. In which case R(s,,to) = O.

2) All values J(x) • 0 are distinct. It means that each unit of T can only be
mapped onto one unit of S.

3) J(x + 1) _> J(x) + 1. This condition preserves the sequence order.

This latter assumption reflects also the fact we are dealing with a problem
of partial knowledge. Hence the search clue may be not completely refined but
the units which are present in it must be present in the retrieved items. With
reference to the theory of sequence comparison [San83], this choice has reduced
considerably the complexity of the problem. In fact, if the distance between two
sequences is computed as the smallest number of elementary operations that must
be applied to transform the first one into the second one, here such operations
are reduced only to insertions and do not include deletions and replacements. So
the problem of selecting the mapping becomes easier.

Given a similarity computation algorithm, we need a file organaization which
restricts our attention to the set of appropriate items. Formulae are indexed on
the basis of the primary TEX control sequences appearing in the body and an
inverted index is maintained. The query string is processed by the same indexing
procedure and the extracted keywords are used to look up the inverted file. A
manipulation of the index entries leads to locate a reduced set of items that are
candidates for successive inspection. An exaustive matching is carried out on this
set with the evaluation of the corresponding similarity weight for each element.

The more the structure is refined by the user the more the search will be fast
and selective improving the system precision.

Two problems concerning the formulae description language have been faced.
The first is created by the presence of many TEX control sequences which produce
a typographical effect and, obviously, have no meaning from a mathematical point
of view. Such commands have been conceived to improve the aesthetics of the final
layout and affect the size of special symbols, the spacing rules and so forth. With
analogy to an usual approach in the indexing of textual objects, such commands
have been included into a negative dictionary of so called stopwords and they are
checked and stripped away from strings while being processed.

127

The second encountered problem concerns the association rules for some ope-
rators within the TEX language. An example can better clarify the problem: in
order to specify exponents and deponents, no precedence is required and so the
same expression a~ can be indifferently produced both by the notation a 1" n ~ i
and a ¢ i T n. Such alternative notations can be clearly source of failure during
the matching procedure. The problem has been solved considering them as istan-
ces of the same equivalence class. Even in this case, the analogy can be underlined
with the textual environment: different flection forms for the same word belong
to the same equivalence class with canonical form being the word stem. A very
close approach is adopted here. Starting from the query string supplied by the
user, equivalent configurations are automatically generated and searched.

5 .End U s e r In t e r f ace

The combination of available devices such as high resolution screens and current
trends towards object oriented languages are leading to new models for man-
machine communication. The objective seems to be the elimination of traditional
written command languages to control the applications. With the new interface
technology, windowing, direct popping up into menus, selecting objects, symbols,
alphabets and moving them on the screen with the mouse should be the basic
operating style.

As discussed beforehand, this research activity also focuses interest on the
use of a composition tool as a presentation layer for an information retrieval
application. Mathematical formulae are observed in this framework as generalized
documents. So, it is possible to associate convenient and more readable visual
representation to the abstract aspects of mathematical notations. However, the
internal form is always available so that a formula can be displayed either at, its
poorest level as a string of ascii chars or riproducing its pictorial layout [Nan86].

The same considerations apply to the imput phase. A pure editor capable of
manipulating formulae as ordinary text strings has less interst here. The main
aspect is to design a tool able to support and guide the mathematician to compose
his formulae. The user should always operate on a visual graphical representa-
tion and never have to deal with their internal description. The objective is to
transform this step from an encoding task to a descriptive task lAnd85].

With this goal the integration is in progress with the EasyTeX system and par-
ticularly with its formula processor module. EasyTeX is an interactive document
preparation system presenting an integrated environment to manipulate texts,
formulae and pictures [Cri85]. With reference to our requirements it presents two
attractive features: on one hand it allows the creation of formulae directly on
the screen according to the fashion of wyswyg while, on the other, produces as
output the TEX language Iinearized representation. Within this environment the
formula is described naturally in the same way in which it would be dictated.
Constant guidance is supplied with the machine prompting and aiding the user
as necessary and with the cursor movement which indicates the element to be

128

entered into the formula being generated. Mathematical symbols are entered by
means of a virtual keyboard displayable on the screen and commands are supplied
by pressing function keys or selecting them from a menu. EasyTeX uses the wide
spread personal computer IBM/XT with graphic card. The station can be used
locally as well as in conjunction with large main frames.

It is remarkable to notice that the information retrieval application has no di-
rect access to the physical device. The results are displayed through the formatter
and the imput data come from the EasyTeX editor.

6.Concluding Remarks
In the previous pages we have presented the main aspects of a continuing research
aimed at solving the problems of organizing, searching and accessing a formulae
collection. Some innovative ideas in the field of information retrieval systems have
been reported and the role of document manipulation tools has been rivisited as
interface layers in order to improve the man-machine communication.

has been proposed as a basic language for compilation, typesetting and
searching of formulae,

A new end user interface based on the reported guidelines is under development.
It will include graphical presentation services for interactive viewing of the concept
base and the integration with the EasyTeX editor to provide facilities for entering
formulae in a friendly, easy to use, environment.

Further research is needed to refine searching algorithms and to relate thre-
shold values of the similarity function to performance parameters like recall and
precision.

In a long term vision, this may be conceived as the first step towards advanced
interaction techniques with formulae bases as required in many fields of scientific
knowledge.

Aknowledgments
Thanks are due to Prof. DegliAntoni from the Information Science Department
for discussions about the formulae retrieval facilities and to Prof. Montaldi from
the Physics Department for his suggestions about the user requirements in acces-
sing a formulae base.

This work has been partially supported with funds from The Ministry of Public
Education with reference to the research program titled Scienti~c Communication
Systems

129

References

[And85] J.Andre, Y.Grundt, V.Quint: Towards an Interactive Math Mode in TEX
TE X for Scientific Documentation Ed. D.Lucarella Addison-Wesley Pub. Comp.
(1985).

[Bar83] M.Bartaschi, H.P.Frei: Adapting a Data Organization to the Structure
of Stored Information Research and Development in Information Retrieval Ed.
G.Satton Springer-Verlag (1983).

[Bar84] E.Barbi, alii: A Conceptual Approach to Document Retrieval Proceedings
ACM SIGOA Conference (1984).

[Cri85] E.Crisanti, alii: EasyTeX: An Integrated Environment for Scientific Do-
cument Preparation and a TEXFront End Protext II Proceedings Ed. J.H.Miller
Boole Press (1985).

[Cro82] W.B.Croft: The Implematation of a Document Retrieval System Research
and Development in Information Retrieval Ed. G.Salton Springer-Verlag (1983).

[Fin79] N.V.Findler: Associative Networks. Representation and use of Knowledge
by Computers Academic Press (1979).

[Fre83] H.P.Frei, J.F.Jauslin: Graphical Presentation of Information and Services:
An User Oriented Interface Information Technology: Research and Development
Vol.2, (1983).

[Hal80] P.A.Hall, G.R.Dowling: Approximate String Matching ACM Computing
Surveys, Vol.12, n.4, Dec.80.

[Ker75] B.W.Kernighan, L.Cerry:A system for Typesetting Mathematics A'CM
Comm. Vol.18, n.3, Mar.75.

[Knu79] D.E.Knuth:TEX and METAFONT: New directions in Typesetting Digital
Press (1979).

[Knu84] D.E.Knuth:The TEXbook Addison-Wesley Pub. Comp. (1984).

[Lec82] Y.Leclerc, alii: A Browsing Approach to Documentation IEEE Computer,
Jun.82.

[Luc84] D.Lucarella:TEX Document Retrieval Protext I Proceedings Ed. J.Miller
Boole Press (1984).

[Luc85] D.Lucarella:TEX Formulae Dictionary TF~ for Scientific Documentation
Ed. D.Lucarella Addison-Wesley Pub. Comp. (1985).

[Nan86] M.Nanard, alii: Semantic Guided Editing. A Case Study on Genetic
Manipulation (to appear in) Text Processing and Document Manipulation Ed.
J.C.van Vliet Cambridge University Press (1986).

[Pai85] C.D.Paice, V.Aragon-Ramirez: The Calculation of Similarities between
Multiword Strings using a Thesaurus Proc. RIAO 85, 18-20 Mar.85 Grenoble,
France

130

[Sa183] G.Salton, J.McGill:Introduction to Modern Information Retrieval McGraw
Hill (1983).
[San83] D.Sankoff, J.B.KruskM: The Teory and Practice of Sequence Comparison
Addison-Wesley Pub. Comp. (1983).
[Sho81] P.Shoval: Expert/Consultation System for a Retrieval Data Base with
Semantic Network of Concepts Proceedings ACM SIGIR Conference (1981).
[We183] S.M.Welford,alii:Towards Simplified Access to Chemical Information in
Patent Literature Journal Inf.Science n.6 (1983) North-Holland

I N T E G R A T I N G TEX I N A N E D D S

W I T H V E R Y H I G H R E S O L U T I O N C A P A B I L I T I E S

Philippe PENNY

Centre National d'Etude
des Tglgcommunications

38-40 rue du Ggngral Leclerc
92131 Issy-les-Moulineaux, France

Jean-Louis H E N R I O T

M Y F R A
83 bd Aristide Briand

92120 Montrouge, France

A b s t r a c t

We present the integration of TEX on a very high resolution bitmap display work-
station used by the S A R D E project at cne t . The characteristics of this subsys-
tem will a11ow to propose a computer aided publishing (CAP) environment as one
function in a distributed electronic document delivery system (EDDS).

1. T h e S A R D E pro jec t

The aim of the SARDE project (standing for Electronic Document Archival and
Retrieval System) is to automate entirely the management and the consultation
of the whole technical documentation related to the maintenance of the French
telephone network. Started in 1983 at cne t (the French National Research Center
for Telecommunications), the SARDE project [4] conducted feasibility studies
until 1984. An experimentation was launched early this year, and its evaluation
should lead to the specifications of the full-scale system (one national server and
2000 workstations). Technological transfers have already been achieved in several
fields, some of them with MYFRA concerning the architecture of a commercial
EDDS (SMDOC) and specialized hardware subsystems.

The SARDE project developed an architecture for scanning, indexing, storing,
transmitting and displaying large amounts of documents (five millions eventually)
all over the national territory. Document acquisition is achieved through a massive
process involving scanners with a resolution ranging from 200 to 400 dots/inch
(dpi) for documents on paper (A4 format), microforms or films on aperture cards
for large plans. The indexation is already available from an existing database for
the most part, with a certain percentage of discrepencies inherent to the volume
of data and to the heterogeneity of document producers (the manufacturers of
telephone equipment).

Images are stored on WORM optical discs after compression with facsimile
standard techniques or through an original hybrid method combining vector con-
struction, pseudo pattern recognition and facsimile coding [3]. The images of

132

documents can be accessed locally or from remote workstations through the best
network facility available in situ (the 64 kbps throughput of the future national
ISN and of the Telecoml satellite wherever applicable, or the 9.6 to 48 kbps of
Transpac in the worst cases).

Documents are retrieved in the database from workstations having very high
resolution capabilities and powerful document manipulation facilities. The char-
acteristics of these machines were very attractive for document preparation also,
which corresponds to the next natural step after the all-scanning approach of
the exploratory SARDE experiments. Indeed, in our application most technical
documents are currently produced with word-processors but there is not yet an
infrastructure for communicating and consulting them in their primary electronic
form, and only the paper could be dispatched till now. It is expected that a
distributed electronic document delivery system (EDDS) like SARDE [5] will be
used as the unique support for documents from creation to consultation, and even
to annotations, corrections and formation.

In this context, TEX was introduced in the SARDE project for evaluation on
the workstations described in the next section, and it should be proposed later as
the main processor of a computer aided publishing (CAP) environment within a
consistent commercial EDDS line.

2. T h e ve ry h igh r e s o l u t i o n Or ion w o r k s t a t i o n s

In the case of the SAt~DE project, the technical documents on paper scanned at
200 dpi are not originals but already copies of copies, and their facsimile images are
not in good shape, to the point that misinterpretations could occur (is it a dashed
or a partially erased line on this electronic schema?) if usual 1 million pixels
screens were used by maintenance staff. This led to the development of several
bitmap displays by concurrent manufacturers following the specifications of the
SARDE project, i.e. the possibility (1) to display a 200 dpi A4 format document
(corresponding exactly to a 512 kb--or 4million pixels-- facsimile image) on a
very stable monitor, (2) to manipulate this image with simple procedures involving
icons and a pointing device, and (3) to run a bibliographical application dialog
on windows superimposed to document images.

MYFRA was the first company to fulfill these requirements with an A4 portrait
version of its Orion display subsystem, and with a 19" landscape monitor. This
preliminary version includes one bitmap accessed through a specialized vector-
oriented interface, a wired character generator (each character can be turned on or
off above the bitmap), a reconfigurable keyboard and a mouse. It was proposed for
a general-purpose 32-bits multiprocessor (the sm90 designed at cne t and running
Unix), which is already used at each functional level of the SARDE experiments.

A second and more powerful version of the Orion terminal has been introduced
recently. It comprises two 4 million pixels bitmaps which can be accessed as
R / W memory, or through an interface capable of vector to raster mapping and
of raster inclusion from another memory into any one of the two bitmaps. These

133

two separate bitmaps can be displayed according to several modes involving a
programmable, virtual grid which allows to show individually in each element of
the grid any one of the two raster memories; in case of superimposition of the two
bitmaps within one element of the grid, boolean operations can be applied. The
images are displayed on a 19" screen, and a completely programmable keyboard
and mouse interface is connected to a serial line of the computer.

Essentially, this new version of Orion is dedicated to tasks involving the simul-
taneous manipulations of several documents:
- windows of text for dialog with a database server, displayed above images of

the selected documents,
- computer aided drawing, as projecting high voltage electrical lines on top of

geographical maps,
- document preparation . . .

3. I n t e g r a t i n g TEX on Or ion (first vers ion)

During the evaluation of ~ within the SARDE project, we intended to integrate
three activities:

- entering and updating texts with a 'TEX-mode' editor,
- analyzing text by TEX and being able to fix problems synchronously in the

source,
- reviewing the displayed output and simultaneously editing the source for en-

hancements.
This evaluation started with the first version of the workstation decribed above

(one 4 million pixels bitmap and a wired character generator) and it used the im-
plementation of the TEX processor conducted by FOATA and ROY at the Univer-
sit~ Louis Pasteur in Strasbourg [2]. It consisted essentially in the developement
of two 'preview' drivers for:
- the A4 portrait version of the monitor (with a 200 dpi resolution),
- the 19" landscape version (corresponding to a true 132 dpi resolution).

This 'landscape' version allows, using 150 dpi fonts, to display two full A4 pages
side by side alternatively. Thus the end user prepares a text in very comfortable
conditions, thanks to the progressive exploration of a very high quality output.

At the same time we were working at the integration of Winnie, an emacs-like
editor written in C at the Universitg d'Orsay [1]. This multiwindow, multibuffer
and multimode text editor proved to be very efficient on the character generator
of the first version of the Orion terminal, displaying 54 lines of 143 fixed size char-
acters. Thanks to specific extensions, it gave us the possibility to propose a first
TEX environment integrated on the same terminal with the following functions:
- since any process can run 'in' a window of Winnie, TEX can be started to

analyze a text in one window while the text is available for fixing bugs in
another window as they are detected by TEX; it can be noticed that only
'semantic' errors should occur since the text is edited using a 'TEX-mode'

134

which deals with common syntactic verifications (balanced braces, predefined
macros and al iases, . . .) .

- The components of a source text are edited in typically 71-character wide
windows which can be turned on/off at wilt or moved according to vertical of
horizontal symetries; then the user can visualize editor windows on one side
of the screen and one of the two pages output with the bitmap on the other
side, or two pages of output if necessary; in all cases, the presentation of the
output is controlled by the corresponding driver which runs as a process in a
dedicated text window of the editor, and under the final control of the user.

Eventually we got the desired functionalities with relatively small efforts, most
of our activity having been spent in the creation of TEX macro sets for inter-
nal use (technical documentation, administrative notes, articles, even a thesis of
linguistics).

It must be noticed that we decided not to offer the required functions through
general bitmap multi-window managers, as it is done on most computers with
raster displays. One reason was the actuaI definition (4 million pixels) of the
screen and the absence of wired operators for raster manipulations in the interface
of the Orion terminal. The second was that the end user spends most of his time
editing source text, and not playing around windows. In these conditions, it is
completely useless to overload the main processor with raster operations on such
a large bitmap, when the available combination of the character generator and of
the bitmap display (driven by the TEX-extended Winnie editor and by the TEX
output driver respectively) were enough to fulfill our first requirements.

4. A C A P e n v i r o n m e n t w i t h i n an E D D S

The next step consists in building a computer aided publishing environment con-
sidered as the major document production source within EDDS applications like
SARDE. Compared to the facilities integrated until now, it must include enhance-
ments in data entry and indexation, typeset interactivity and multiple inputs
manipulation.

In large organizations issuing standardized notes, reports, brochures, . . . , the
TEX-mode editing process must be specialized for each kind of document pro-
duced, in order to encapsulate TEX with the adequate set of macros (mainly
related to the structure of the document and to indexes), plus some typograph-
ical possibilities. Such macros could output essential data ready to be entered
in reference databases of the EDDS where the document will be archived. In
this scheme of automatic index construction, both quantity and quality of index
entries should be considerably enhanced compared to present documentation sys-
tems, since the authors are still at the best place to indicate how to index their
documents.

As a text is keyed in by a typist, it seems possible to give an immediate feedback
of textual typesetting: font changes can be interpreted by the text editor, as
in STRATEC [2], and a paragraph can be typeset and output as soon as it is

135

completely entered [6] (without page 'shipout' however). But interactivity in the
other way is more difficult (pointing a mistyped word on the output in order to
be automatically positioned on the same word in the source text); it could be
achieved on the basis of pages however, since the large editor windows are able
to contain most of the source text output on the same page by TEX.

In an EDDS like SARDE where all kinds of documents are stored, it is already
possible to create new documents from parts of others, manipulating facsimile
bitmaps and adding personal annotations. Now multiple inputs manipulations
will take advantage of the new functionalities of the Orion terminal. With two
bitmaps which can be selectively displayed through a programmable grid and
boolean combinations, it is easy to integrate drawings, figures, even ordinary text
within a TEX output, and to arrange a final document from different sources,
according to traditional publishing manipulations.

5. TEX in d i s t r i b u t e d E D D S s

An EDDS distributed all over a large organization becomes the backbone of ap-
plications for document manipulations involving remote partners. For instance a
technical manual issued by a manufacturer must be validated by an evaluation
team, then broadcasted to end users who are expected to indicate inconsistencies
between its contents and the reality. Such a large EDDS would include hetero-
geneous computer systems (from micros to mainframes) and it is probable that
TEX can run on most machines, as it is the case at cnet .

In these circumstances, source and even '.dvi' files can be used as a de .facto
standard for communicating documents throughout the whole network, since the
same outputs will be produced everywhere, while the reference database of the
EDDS records the semantic structure of each document and its links with others.
Such an exciting perspective, along with the high resolution capabilities of the
Orion terminal, urge us to enhance the existing integration of TEX in distributed
EDDSs.

References

1 AMAR Patrick, FILOTTI Ion. - - WINNIE, LRI Univ. Orsay, 1985.
2 FOATA Dominique et al. - - S T R A T E C , Publ. IRMA Strasbourg, 1984.
3 JOLY Pascale, ROMEO Fra4oise. - - A high compression coding method for

facsimile documents, Proc. 2nd Int. Tech. Syrup. on Optical and Electro-
Optical Applied Science and Engineering, Cannes, 1985.

4 PENNY Philippe, PICARD Michel. - - Application of novel technologies to
the management of a very large data base, Proc. 9th Int. Conf. on VLDB,
Florence, 1983.

5 PENNY Philippe. - - Technical Documentation Storage and Retrieval, Invited
paper to be published in Proc. of the 86 IFIP Congress, Dublin, 1986.

6 ROY Yves et al. - - TEX et son environnement, Proc. Jour. sm90, ADI, 1985.

THE TF~ - BASED DOCUMENT FACTORY

IN A UNIVERSITY ENVIRONMENT:

PROCESS MODEL~ IMPLEMENTATION STEPS~ EXPERIENCES

Heinz W. P E T E R S E N

R W T H A A C H E N
Computing Centre

5100 Aachen, Germany

A b s t r a c t

The importance of document processing is briefly described by some examples and
an overlook of the idea of a "document factory" and the individual requirements
of an university environment is given. The system complexity and implemen-
tation characteristics make it necessary to develop and use a processing model
which allows to describe all functions and interfaces in a satisfying resolution.
The model is used as a basis for local standards, makes it easier to discuss and
include international recommendations and gives the organisational structure [or
the complete implementation work. Conclusions and configuration examples close
the presented paper.

1. In troduct ion

During the last five years the ideas of computer assisted document preparation sys-
tems have claimed more and more publicity. One central reason seems to be, that
these systems are of great interest in different application areas--such as inhouse
publishing, publishers of printed media, the printing industry, the universities
and research centres representing the authors of scientific and technical papers.
Therefore we understand a document as a combination of different information
types, such as character strings, formulas, graphics, tables etc. Analysing the
needs and requirements of the university people, we find that document process-
ing tools and methods have more application aspects than especially automatic
typesetting and printing. Although it is as much the primary goal to help the
scientific authors performing the production and publishing process, it seems to
be usefull to investigate some general ideas with respect to this process and to
watch some quickly arising environment depending problems. Regarding the vari-
ety of now available tools for electronic document processing (TEX for typesetting
purposes, data bases, laser printers, laser typesetters etc.) we can state that:

137

• basically, a complete set of tools can support the publishing process
from the author's part of the game to the distributor of readable
material,

• the university administration discovers its interest to publish in-
formation for students and the scientific staff (curriculum, forms,
inhouse messages, teaching materials, correspondence courses) as
well as to improve the universities general public representation,

• the interfacing of literature supply by libraries and external data
bases to support the scientific work can be integrated,

• the further development of document processing systems leads to
a strict separation of information content, logical and layout struc-
ture, a better understanding of knowledge handling and the process
of knowledge representation, i.e. the basic university business.

2. T h e idea of the " D o c u m e n t Factory"

We understand the so called document factory as the set of available or desirable
tools, methods and add ons for document storage, processing, presentation etc.
The name was chosen, because everybody, who began to use text processing
systems and later on TEX to produce his documents, found, that after having
done the first step, a variety of additional services and tools could be helpful.
On the other side, investments in hardware and software for such services should
give benefits to a considerably large number of users (e.g. campus licences for
software, protocol converting to other systems, inhouse software development).

Some of the goals which should be reached by implementing and combining
these tools are the following:

• the scope of the authors should be separated from the scope of the
production people (scanner operators, typesetting specialists, pro-
grammers, font designers etc.). This, in many cases, causes different
workstations, soft- and hardware-toots.

• the service should be available for each member of the university,
that is students, scientists, secretaries, administration employees
etc. This implies different application fields and different user in-
terfaces (in case of TEX different user oriented macro packages).

• the document processing has to be embedded in the existing en-
vironment. This requires tools for input, storage and processing
of already existing documents, interfaces to typesetting or printing
facilities and the implementation of formats for the interchange of
documents.

• library services and the usage of external data bases have to be
integrated.

138

• central services as font conversion and support, definition of doc-
ument classes, delivery and test of speciM application programs,
device drivers and error handling have to be instMled.

• the existence and development of international and national stan-
dards have to be taken into account.

• document editing software for text, formulas and graphics should
be available on simple PCs for any author and licenced by the uni-
versity.

• since centrM functions are necessary by organizing or financiM rea-
sons, they should be offered as a network service.

• a central institution should be responsible for the document pro-
cessing service.

• special efforts have to be made for education and user support by
competent persons.

3. The Document Processing Model

The most important of all the experiences, which were made during the first
steps into the document processing world, was the fact, that the complexity of
the proposed system would at first require an abstract model. This model is
needed to define functions, data objects and interfaces between them. In addition
it is used to incorporate existing software packages by translating different input
and output formats if necessary. It gives an orientation and a frame for all the
work that has to be coordinated. A very rough overlook of the system parts is
given in lqg. 1.

P a r t 1 is called the document preprocessing module. This part is neces-
sary mainly for the input of existing printed documents. These documents are
read by a scanner and have to be converted to a processable form. The process-
able form in this case is called the "manuscript" and consists of a description of
the documents logical structure and the content portions. The content portions
are different types of information as text, formulas, composite graphics, tables,
raster images etc. Since the system functions in general are very different, de-
pending on the type of information, part 1 works as a "split function" where
these types of information have to be separated. Hence, the following functions
on manuscripts and the presentation process can be shown in three dimensions,
where the third dimension describes the different processes of handling different
types of information. Immediately before the physically recognizable document
occurs, the different data objects, representing text, formulas, graphics etc., must
be assembled and integrated. That 's what we call the assembly function.

P a r t 2 contains the manuscript as data object and two classes of functions:
the editors, which are the basic software tools for authors and the manipulation

139

functions for data, represented by the description of their content and logical
markers, describing the information structure.

P a r t 3 shows the presentation process, that is the mapping of manuscripts to
a certain output device. The main function of this part, the formatting process,
is performed by TEX • Without any doubt, TEX is the most powerful available
typesetting program for scientific applications, although there should be some
necessary attachements and upgradings. In spite of these, all the presently known
needs of harmonization between TEX and the user requirements can be achieved,
as including graphics and raster images, application oriented user interfaces, the
compatibility of non-TEX fonts etc.

The model is now shown in further details by fig.2. In this figure, data objects
are shown as squares, functions as arrows and the user interfaces, which represent
the interactive system paths, are marked with "U"s.

This graphic representation of the complete process (without the manuscript
handling p a r t) m u s t be thought again as three-dimensional, where the third di-
mension is built by the different information types as text, graphics, formulas etc.
It shall be stated at this point, that the structure of the process and the basic
requirements concerning data objects, functions and user interfaces are identical,
although some of them are not sufficiently described and implemented (e.g. the
logical markup of graphics and the transformation to a layout structure). We
understand the meaning of the model elements (from left to right) as follows:

Beginning with the document preprocessing part as an input function into
the system for existing printed documents or the input of sketched graphics,
we find each document as a set of pixels. Therefore we call this the uncoded,
unstructured state of the document, or shortly "the sketch". To get the next
state, the coded but unstructured form, we can use character recognizers for text
recognition resp. coding and vectorizers to do the same with graphics. Since
these functions--represented as the leftmost arrow in the model- -cannot work
completely satisfying in all cases, the interactive path for support by the user is
very important. Anyhow, to get the coded state named "text", we have to work
on some unusual software tools and interactive techniques. The text (the meaning
of this word is not restricted to character strings!) can then be marked up with
(in our case) SGML-based markers and the resulting state of the document is the
so called "manuscript". The manuscript is understood as containing the content
of the document and the description of its logical structure. No information about
layout, design, physical representation etc. is contained in this state.

A second way to get manuscripts into the system is, that the author uses
a manuscript editor to interactively generate this state of his document. The
work on those editors, which use the document type definition (or document class
representation), is still in progress, but we believe, that these editors will give a
powerful tool and help for the authors.

The third way of getting manuscripts--reading external text with logical mark-
up--makes it necessary to use an SGML-parser in order to verify the syntactical

140

correctness of the specific document. By any method, the manuscript is the input
for the formatting process. This process starts by replacing the logical markers
by typographic commands. These commands express, how the user wants to get
his document designed. The transformation from manuscript to "typoscript" is
performed with respect to the "layout directives" which are offered by the system
and edited by those people, who are trained in typographics. The typoscript is
the processible document state and is transformed by TEX into the "printscript
1", the device-independant formatted state of the document (or DVI-file). Tile
formatting process is influenced by "aesthetic functions", in case of TE X realizable
by macros. The macro parameters, such as individual letter spacing, line spacing,
positioning of mathematical symbols, etc. should be editable by means of an
editor with an adequate user shell.

The device driver now produces the "printscript 2", that is the document's de-
vice dependant presentation. Generally, the driver has to integrate the different
information types and to calculate the correct positioning and mapping of graph-
ics, pictures etc. In special applications we want to edit this P2-file, for example
the pixel-file of a scanned or generated logo.

After these short illustrations of the model elements, three points ought to be
highlighted: Looking at the model makes clear, that there exists a straight forward
batch oriented function of the complete process in vertical orientation. This holds
for a lot of documents to be processed, but it is useful and necessary to find the
principal points of human interaction. These points require paths to a certain
user interface, which have basically the same structure as the batch process, i.e.
translation of an entire manuscript to a visible form. These entire manuscripts
are the different states of the documents which are processed automatically and
the related data. This fact leads to some general implementation characteristics.

Real systems often require mixed procedures, i.e. the batch process is to be
supported by interactive means. We believe, that future system developments
either in the university or the industry area will lead to complete systems in the
sense, that all horizontal and vertical paths are available and the combination of
system functions which are in use, depends only on the document type, resp. the
necessary production process.

It is possible to classify the existing text and document processing systems
by comparing their properties with the data objects, functions and interfaces of
the model. The result is the definition and implementation of protocol convert-
ing procedures (or to understand why this could be impossible) between systems
of different manufacturers and different application areas, e.g. phototypesetters,
typesetting systems, computer and text processing equipment. Our experiences
showed, that one of the most important problems in most cases is the incompat-
ibility of fonts.

It is obvious, that the usage of this model requires the detailed definition of
interfaces and data structures. Unfortunately the international standardisation

141

work (e.g. SGML, ODA, ODIF) has just been set up--so far the de facto standard
of TEX is very helpful.

4. Organizational Remarks
The document factory is organized in "departments", which axe responsible for
the following working areas (fig.3):

1. production environment

2. storage and transmission functions

3. device drivers

4. TEX application

5. user interfaces

6. SGML-processor and manuscript editing tools

7. document preprocessing

Possibly the most important department deals with the production environment,
i.e. the operational aids for interfacing the document preparation process to
the users, the network services, font preparation, delivery of documents over the
campus, accounting system etc. Presently one main interest is, to solve the font
compatibility problem together with the interface to professional document pro-
cessing in the graphic industry.

5. Implementation steps

Naturally, the first experiences in the field of scientific publishing were made by
TEX and different mainframe installations. Since (in our case) PCTEX is available,
the number of users grows fairly fast. Fig.4 shows an example of the experimental
implementation at the University of Aachen, i.e. the service is not yet in public
use. The DVI-file processing for different devices and the integration of graphics
(preferably produced by an interactive tool named uniCAD) is performed by a
TEX-server based on IBM AT hardware. The manuscript editing is done by PCs
or typewriters in simpler cases--therefore the input into the system is organized
by an OCR-reader or an interface converter for different floppy disc formats. The
connection to professional typesetting systems is just in preparation.

From our point of view we can state, that the usage of document processing
tools for scientific and technical applications shows a new quality with respect to
softwaxel hardware and the requirements to the professional market. We expect a
very dynamic development for the near future. But our main experience is, that
TEX--together with the appropriate environment and some education efforts--is
a very successful instrument to upgrade the efficiency of scientific work.

142

DOCUMENT
]_ PREPROCESSING

F___[TFt

f [1AGE S OH~.~ [F ITNTA~

I ~ >1"""°~'~'1 I U __LY_ ~" ~ l~"'
STRUCT. ~' t i l U
AND I'IAI, t[PUL, i l l
CONTENT OF i F , .
HANOL ING IIANUSCIL I -I I F I G. i I

l

2 7 3

.,,, ,,, I ,,,,,,,, ,, ,,,,
I I I I I I I H I

i I I !

I;'~ I"1~1" I ~ I]1~'01"11 '~1~'11
i

1
=

s 6 ~

143

01
Z
0

L)
Z
]
ii
Z
0

60
O~

7-
O]

Z

O~

n
Z
CE

I
LLI
(D
(]Z
rY
0

T

CO
I - -
C.) 0")
W Z
" ~ 0
I:::D
0 I - -
t3: O
1--- Z
(]::
n LL

(.r)
C~ Z
ILl 0

C[: I -
LL C_)
1:~ Z
W
I--- I i
Z EE

n / t--
ILl
U) r'-i

W
I I I1

W

£

@

/
[N

P
U

T
-

~E
~I

IO
CR
-R
ER
DE
RI

/

i ,
W
R
H
/
L
R
~

~,
C

R
N

N
E

R

J
_A

H
/P

A
B

X

I
,

I

--
I

sE
R,,

ER
f

'L
S

R

'e
X-
OU
TP
UT

NT
EG
RR
TE
D

GR
RP
HI
CS

.I
NE

PR
IN

TE
R

"L
S

R

G R I F : A N I N T E R A C T I V E E N V I R O N M E N T F O R TEX

Vincent QUINT

lrbne V A T T O N

Hassan BEDOR

Laboratoire de Ggnie Informatique
Universitg de Grenoble

BP 68, 38402 St Martin d'Hbres, France

A b s t r a c t

Several attempts have been made for making TEX more user-friendly by providing
specific tools for preview or input of documents. We propose a different approach
which uses an interactive system for editing the documents intended to be tbr-
matted by TEX. This system, Grif, is based on a structured model of documents
and a11ows the user to define the structure and presentation of documents edited.
We present how it may be used for efficiently preparing documents to be printed
byTp);.

1. P r e s e n t a t i o n

TEX [6] is well known for the typesetting quality of the documents it produces,
but it is also known for its input language, which is not so user-friendly. A
number of solutions have been proposed for making TEX more convivial (see
[1], [2], [3], [4], [5]). All these projects intend to help the user to input TF~X
documents. Other tools have been developed for displaying an image of the final
form of the document on the workstation screen; these preview systems are used
for shortening the cycle input, formatting, proof-reading, correction.

In these systems, the trend is to make TEX more or less interactive. Our
approach is to use a true interactive system in conjunction with TEX. The sys-
tem we use is Grif [9], an editor for manipulating structured documents. We
take advantage of the openness and flexibility of Grif for adapting it to the TEX
requirements.

In the next sections we present the document model on which Grif is based
and the main principles of the interactive editor. The way documents are printed
is then described and finally we present two different view-points for using TEX
in such an interactive environement.

146

2. T h e d o c u m e n t m o d e l

As with many high-level formatters, Grif is based on a logical model of documents.
A document is seen as an organised collection of elements. The organisation de-
scribes the logical structure of the document, with elements like chapters, sections,
sub-sections, paragraphs, notes, titles, etc. Each element has a type and a docu-
ment contains several elements with the same type. Each type is built with other
types: a chapter is built with a title and a sequence of sections, a section is built
with a title and a sequence of paragraphs, and so on. This way of building an
element with others defines a generic structure, a model after which the specific
structure of each document is built.

In order to be able to manipulate a wide variety of documents, we do not define
a unique generic s tructure for all kinds of documents. We rather define several
generic structures, each one describing the organisation of a set (we say a class) of
similar documents. So, we can define a class "letter", or a class "technical report",
or a class "contract", each class having an adapted generic s tructure with its own
types of elements: there is no chapter in a letter, but there is an address and a
signature, which are not present in a report.

Even if each class has a different generic structure, many classes use such
common types of elements as paragraphs or notes. Therefore a generic structure
may use other generic structures, in order to share this kind of s t ructure of general
use. This sharing of structures is not only used for textual elements, but also for
elements like tables, or mathematical formulae. Thus we define classes of non-
textual objects, for these objects may be structured in the same way as documents.
This leads to an homogeneous model which encompasses whole documents of
various kinds as well as the objects they contain.

In fact our model is a meta-model which allows models of documents and
objects to be described. This approach is very flexible as it allows new models to
be defined according to the needs and it ensures that each model is well adapted
to the documents or objects it is supposed to represent. For example, we can have
several classes of tables, each one with a different kind of organisation.

S t ruc tures built according to such a model are trees. The main structure
is a tree representing the whole document, and most objects included in the
document are sub-trees of that tree. Each node of the tree has a type (title,
chapter, fraction, numerator.. .) and may have attributes which add semantics
to the element. Examples of at t r ibutes are the language in which a part of the
document is written, or the importance of a fragment of text (keyword or index).
These at t r ibutes are useful for several different applications and especially for
printing the document: a formatter hyphenates words according to the language;
it prints them with typographical at t r ibutes corresponding to their importance.

In addition to the main tree structure, there are references which represent
non-hierarchical relationships between elements; this allows one element to be
referenced from another independently of their relative levels in the tree. It is
thus possible from any paragraph to refer to a chapter ("As seen in chapter

t47

..."), a figure or a bibliographic quotation. The system may then substi tute the
number of the referenced element or its title or any other of its sub-elements for
the reference.

Using this kind of structure, an editor or a format ter can display or print the
document with very little additional information from the author. The presenta-
tion of a document or object may be automatically generated from the structure.
For example, a fraction is displayed with the numerator centered over the denom-
inator and with a horizontal bar between both expressions; the title of a report
is printed with large letters and centered in the page.

If an editor knows about the structure of the objects it manipulates and if it has
rules for presenting these structures, then the user does not have to worry about
presentation: when the title of a report is entered, the editor can automatically
change the character size and center the text.

Another advantage of this automatic presentation is that it leads to a homo-
geneous presentation for all documents belonging to the same class. All reports
will have their title centered and writ ten with the same size, if the system uses
the same presentation rules for the class "report". The presentation is not inter-
mixed with the s tructure or the content of the document; it is described outside
the document , within the set of presentation rules associated with the class. This
set of rules is called a presentation schema.

Several presentation schemas can be defined for the same class of documents,
allowing the user to display the document in different ways according to the task to
be performed. It is thus possible to use a simple presentation schema for editing
and a more sophisticated one for previewing, without modifying the document
itself, just by changing the presentation schema used by the system.

The presentation schema defines how each type of element defined in the struc-
ture schema is to be displayed by the editor. There are presentation rules for
elements of the s tructure and for attributes. Presentat ion rules use the same
model of boxes as in TEX. To each element of the s tructure corresponds a box;
the presentation rules define relative positions and dimensions for boxes according
to their types and relation in the document structure. This model allows text to
be presented as well as formulae or tables or other types of objects.

In a presentation schema, several views may be defined. A view is a partial
representation of a document. So, a table of contents is a view which collects
together all section titles. The presentation schema allows any number of views
to be defined, specifying for each type of element in which views the element is
visible and how it is to be presented in those views. While editing, the user can
create the views he requires, being able to destroy any view at any time. He can
then use these views for editing or moving across the document .

As the layout of the document can be built from its s t ructure and from. a
presentation schema, a document is stored with only its specific structure and its
content, but without any presentation information. This representation is called
the external representation of the document.

148

3. T h e G r i f e d i t o r

Grif is based on the above notion of document model. The whole system com-
prises several programs: three compilers, an editor and a converter (see figure
1). Generic structures are described with a dedicated declarative language, called
S. Similarly, presentation schemas are written with a specific language, called P.
With these two languages it is possible to specify new classes of documents or
objects as well as new presentations for documents and objects. Languages S and
P are compiled and the compilers produce tables which are used by the editor.

The editor itself is split into two main components for separating the user in-
terface functions handled by the Mediator from the processing functions handled
by the Editor. The Editor checks the specific structures of documents; it elabo-
rates them according to their generic structures and prepares their display. The
Mediator takes full responsibility for the physical support; it produces pictures
on the screen and manages all physical interactions with the user. The Editor
defines the set of commands it is able to interpret and the Mediator builds forms
and menus to present these commands to the user and returns the user's answers
to the Editor.

The Editor uses the generic structures of document and objects for generating
the abstract tree of a document which represents the specific structure of the
whole document being edited. Using the presentation rules in accordance with
the structure of the document, the Editor produces an abstract picture of the
document. An abstract picture gives the logical layout of what the Mediator
has to show. It is in fact a tree describing the arrangement of several types of
units: texts, pictures, graphics and symbols, which are the leaves of the tree.
A node of an abstract picture corresponds to a node of an abstract tree. The
Mediator analyses each abstract picture and, by taking into account the physical
characteristics of the device (character size, window size, etc) it constructs a set
of boxes making up the real picture, which is finally displayed.

A node of an abstract picture gathers together information and presentation
constraints which define how the associated information is to be presented. The
Mediator builds a box for each node of an abstract picture; presentation con-
straints permitt ing the calculation of the width, height and positioning of the
boxes, the bodysize and style of the characters and the construction of lines.

In all cases, presentation constraints are completely device independent. For
example the choice of font style and size is performed by the Mediator by deduc-
tion from two logical constraints: the highlight level and the relative pointsize. In
the same way, the horizontal and vertical units used are converted into physical
units according to the associated relative pointsize. This allows the presentation
schemas to be completely device-independent. The construction of lines is per-
formed by the Mediator, by interpreting constraints set by the Editor: mode of
adjustment, centering, indentation, line length, line spacing, etc.

Finally, the set of boxes is organized into a connected graph which represents all
relationships between boxes (relative positions and dimensions). This connected

149

f

Conversion Generic
H i ru les in s t ruc tu re in
LEt language F language S

. 1 !
I I I

, F 1 S
, , I I
, Compi le t , , Compi l e t !

- - - " - '] - - _

, , , , I l l , - i Ili~,~o°,=o
Cooversio. HI tables HI lab,es
tab,es ~ .T,L ~I .STR

Z ~ 1 1 i i

I [Presenta t ion [
H I ru les in [
LLL t anguage P i

/

I
, P
, Comp i Ier
t

1

. I i !

"'), E D I T O R
I I
I I

I I

N E D I R T O R 1
I
I

--I-F- r~...<..........., i Rea I

. i;;:'_7'

i]

External representa t ion [

. ~ _ ~

I , [I

) ', C O N V E R T E R : -
I I

l t

I i ,
L •

t

TEX [" TE X
manuscr i p t ~ I

,,

" - 1 7 " - - - I

Pr in ted
document

Figure 1: Orif architecture.

150

graph allows the Mediator to update the real picture as soon as the document
content is modified by the user.

Until now, interactive structure-oriented systems have mainly been used for
manipulating programs. Therefore they have been designed to be used by com-
puter oriented people. In those systems, the structure of the program being edited
is represented by a tree and the user is supposed to have a good knowledge of
this s tructure as commands are often expressed by reference to that tree. This
approach cannot be used in a document manipulation system where the user is
unfamiliar with such concepts. Although a rich structure is necessary for powerful
processing, it is not desirable to use it systematically in the dialogue between the
user and the system.

Grif is an interactive system: every user action immediately reacts on the doc-
ument content and every document change is directly visible to the user. Of
course, the Editor takes advantage of its knowledge of the documents being han-
dled. It knows their generic structure and so can guide the user in the elaboration
and modification of the document. As with syntactic editors used in program-
ming environments, it offers powerful commands based on structure, especially
for movement, selection and creation.

Whereas structural organisation of documents permits efficient manipulations,
it complicates normal text manipulation. In Grif, s tructure manipulation does
not inhibit text manipulation. The user can select a part of the document by
searching for character strings, extend this selection by pointing to a character as
well as by invoking a structure selection command. When the user deletes, copies,
or inserts within a part of the displayed picture, Grif ensures that the right choice
is made between manipulations made on the structure and those made on the
text, and that this is t ransparent to the user. The Mediator manipulates the text
part of the document and calls the Editor for updating the structure part.

4. Printing documents

While editing, Grif produces a picture of the document from its specific structure
and from the presentation rules chosen by the user. The same principle could be
used for generating the picture of the document on paper, but we took another
approach.

The displayed picture and the printed picture of documents have different
functions. The displayed picture is produced to allow the user to quickly see
the result of the actions he makes by giving him immediate feedback. The user
needs to see clearly in what way the editor interprets the commands he issues,
in order to be able to react in case of mistake. For this purpose the presentation
rules may emphasize some visual effects tha t would not be so evident in a printed
document. The second function of the editor's picture is to allow the user to
directly designate on the screen the part of the document on which he wants to
act. In order to make selection easier, presentation rules may increase some spaces
within the document.

151

Response time is also an important point for the editor. Even with an in-
cremental redisplay policy and optimized algorithms, it is not possible to attain
the best typographical quality on the screen of an interactive editor; the user
would have to wait too long on each occasion that the screen needs reformatting.
Therefore, although it is well adapted for editing, the displayed picture cannot be
printed identically.

As it is not necessary (nor possible) when editing, to use the most sophisticated
formatting algorithms (like those used by TEX), we did not implement them in
Grif. Obviously we need them for producing beautiful papers, but fortunately for-
matters have them. Hence we use formatters for printing the documents produced
by our interactive editor.

Keeping in line with the editor, the produced documents are printed in a flex-
ible way. Grif does not impose a formatter for printing documents but proposes
instead a general mechanism for converting the external representation of a docu-
ment into a description of that document in the language of a formatter like TEX.
This conversion is performed by the converter, which is driven by conversion ta-
bles.

4.1. T h e C o n v e r t e r

The conversion processes is independent of the data contained in the document.
As shown in fig. 1, this process is carried out in two phases. In the first phase
we write conversion rules for the generic structures of different document classes
to print them using a certain formatter. These conversion rules are written in a
dedicated language called F and are compiled once to produce the corresponding
conversion tables. In the second phase, for each document, the converter uses the
appropriate conversion tables for guiding it in generating the formatter source.

The conversion rules are determined by three factors: the document structure,
the used formatter, and the desired layout. In the conversion table associated with
a generic structure, there is a set of conversion rules for each type of element, which
is applied when the converter finds an element of that type in the document being
handled. For each generic structure there is a conversion table to be applied for
a given formatter. In LATEX for example, we have conversion tables for papers,
formulae, etc.

As the formatting commands are different from one formatter to another, we
have different conversion tables for different formatters. For example we have two
conversion tables for the class Paper; one is used with TEX and the other is used
with LATEX. Finally it is obvious that if the desired layout is changed we need to
use other conversion tables.

4.2. T h e l a n g u a g e F

The language F which is used to write the conversion rules is very simple. F
programs contain two divisions: the declaration division and the presentation
division.

1,.52

The declaration division consists of several parts. It essentially contains the
name of the conversion table and the name of the associated generic structure.
It also specifies the maximum length of the lines to be produced, the constants,
the counters and the variables. A constant is simply a name given to a string of
characters. A variable is a name given to a sequence of strings, constants and
counters. Counters are used to number elements by counting the occurences of
certain types of elements in the document. There are three types of counters: the
first type counts the occurence of the element from the beginning of the document,
the second type counts the occurence of the element within a certain part of the
document (for example counting figures within chapters) and the third type counts
the level of the recursive elements (i.e. elements which contain elements of a same
type).

The second division is the presentation division and consists of two parts. In
the first part we define sets of rules which are applied to different attribute-
value pairs. For example there are a set of rules applied when the used language
(attribute) is English (value) and another set if it is French (value). This is useful
when treating multi-language documents.

The second presentation part is constructed as follows: for each type of ele-
ment declared in the corresponding generic structure we may write one or more
conversion rules. We have six types of rules: If, Get, Call, Translate, Create, and
Remove.

With the If rule we can apply a group of rules on any given element condition-
ally: if it is first, last, not first, not last, within a given element or not, etc. For
example the first line of the paragraph is indented if it is not the first paragraph
of the section, and is not indented if it is within the abstract.

The Call rule allows us to use another conversion table for certain types of
structured elements. For example the same conversion table may be used for
all formulae whatever the type of the document wherein they appear: reports,
articles, books, etc. It is important to note that the conversion table called is
not recompiled with the program which calls it, but that the call statement is
performed at conversion time only.

The Remove rule permits any element that is not considered by the formatter
to be removed. Such an element is totally removed together with its contents.

The Get rule permits the order of elements in the document to be changed. For
example if Grif produces the elements A~B,C,D in this order and the formatter
accepts them in the order B ,C ,A,D, we write in the set of rules of element A:

G E T B;
G E T C;

The Create rule allows strings of characters to be written before an element,
after it, at the beginning of the produced file, at the end of the file or when ref-
erencing this element. The created string may contain any single 8 bit character.
The characters that cannot be inputted by the terminal are written using their
codes.

153

Finally the Translate rule helps us to translate certain sequences of characters
or even to remove them. For example the accented letters are treated in different
ways from one formatter to another. Translate rules are used to produce the
suitable sequence of characters for generating these letters. As another example,
the integration symbol in formulae is represented in different ways from one for-
mat ter to another; the Translate rule being used to generate the most suitable
presentation of such symbols.

At compilation time the F compiler uses the name tables (.TBL) to guide it
in compiling and producing the conversion tables (.FPT). At generation time the
converter uses these tables to guide it in generating the formatter input-source
from the external representation of the document.

5. TEX as a p o s t p r o c e s s o r

A first way to use TEX with Grif is to consider TEX as a postprocessor of Grif.
With this point of view, generic structures for documents and objects are defined
independently of TEX, just taking into account their logical structure and the
operations that can be performed on them, for a document is not only edited,
formatted and printed, but can also be used in applications such as information
retrieval systems, data bases, software engineering, etc. Each kind of application
may have some specific requirements on the document structure, in order to be
able to process it efficiently.

When document structures are designed independently of the way documents
will be printed, several formatters may be used. The user may choose one or
the other according to the results he wants to achieve, or to the adequation of
the formatting commands to the structure of the documents. TEX would then
be mainly used for documents requiring the finest typographical quality, and
especially when they contain mathematics. For that kind of usage, the basic
commands offered by plain TEX are sufficient. It is not necessary to use the
macro facility or any macro package, since the conversion rules play this role:
they transform the logical entities defined in the generic structures into sequences
of basic formatting commands.

With this approach, some problems may arise when entities of the generic
structure have no equivalent in TEX. This type of problem was pointed out by [3],
when converting mathematical formulae from Edimath into TEX.

6. G r l f as a p r e p r o c e s s o r

This kind of problem may be avoided by taking the opposite point of view, which
consists in considering Grif as a preprocessor for TEX. The idea is to take full ad-
vantage of TEX features and to use Grif as an interactive tool specifically adapted
for producing documents to be formatted by TEX. With this approach, generic
structures are defined according to the structures manipulated by TEX.

As plain TEX does not use a structured model of documents other than for for-
mulae, it is not well suited, but LATEX [7] with its logical structure of documents

154

is. Thus we define generic structures which correspond to the document styles
of LATEX. We also define a generic structure in accordance with the structure
of mathematical formulae of TEX. With these generic structures Grif produces
documents that can be very simply converted into LATEX.

We define presentation rules for these generic structures and try to give to
the picture produced by the editor an aspect close to what will be produced by
LATEX when formatting the document. The aim is not a WYSIWYG system,
but to present the user with a picture in which he can easily associate with what
is on a previous version of his document printed by LATEX. So line breaks are
different on the screen and on the paper, page breaks are not visible on the
screen, but character sizes and styles, indentations, spaces, centerings, and so on
are approximately the same. Footnotes are not displayed at the bot tom of the
pages (there being no notion of page on the screen...), but in a different window;
however the reference is clearly visible in the text.

Formulae are displayed in two dimensions and it is really easy to edit them,
like with Edimath [8]. Again, the pictures of formulae are not strictly the same
as those produced by TEX , but they are sufficiently precise for editing and for
avoiding most errors done when typing the TEX language directly. The result is
an agreeable interactive TEX environment, with a WYSIWYG style of interface,
but also with all the possibilities of TEX concerning high quality typography.

7. An example

The following example shows how to manipulate a document in a Grif-LaTEX
environment. It explains the production of a Paper in this environment. First
the Paper is edited using the Grif editor. During this phase the user sees the
picture shown on fig.2. The editor uses the following generic structure:

Paper = BEGIN
Tit le= Text;
Authors= LIST OF (Author= Text);
Address= LIST OF (Address~ine= Text);
Abstract= Text;
Sections= LIST OF (Section=

BEGIN
Section_Title= Text;
Section_Body= LIST OF (Sect_Elem=

CASE OF
Paragraph= Text;
Displayed_Formula= Math;
END);

END);
END;

155

iiiiiiiiii iiiiiiiiiiiiiiiiiiii~i i iilii i! ilii iiiiiiiiiil !!iiiiiii iii ii iii!ii ii i!iiiiiiiii ii!iil i!i ii ilii iii~iii ilili!iiiiiii!i!iiil iliii iiiiii!ii!i iiii~i

ii! !i ili

:

i!iiiiiiiiiii~iliiiiiii~iii!!iiiii~ii!iii
. I :::::::::::::::::::::::::::::::

:

i~!iii~iiiiii~!!i~!~ !~ii~i~ili~i ~ '
i!~iii!ii!iii!~i~!i!!iii!iii~i
:

:

::

iiiiiii!ii! iiiiiii i
: ,

iiiiii!iiiii iiii
:

iiiiii iiiiiiiiiiiiii!i
i:i:i:i:i:!:i:i:i:i:?:!:~:!:i:!:~: T e X.

. . v . v

i::ii!::!!i
~i~ili~ii G R I F : A N
::::::::: I N T E R A C T I V E

E N V I R O N M E N T
F O R T e X

: : : : : : : : :
, v . v , .v . - . - . . :< . :+

v , v . ,

GRIF: AN INTEILACTIVE ENVIRONMENT FOR TeX

Vincent QUINT
Irbne VATTON
Hassan BEDOR

Laboratoire d e Gdnie In f ormatique
Universitd de Grenoble

BP 68, 38402 St Martin d'H~res, France

A b s t r a c t

Several at tempts have been made For making T e X more u se r - f r i end l y
by prov id ing spec i f i c tools F o r p r e v i e w or input o f documents, We
propose a d i f f e r e n t approach which uses an interact ive sys tem For
edi t ing the documents i n t ended to be Formatted by TeX. This sys tem,
GriF, is based on a s tructured model o f documents and allows the user
to d e f i n e the structure and presentat ion o f documents edi ted . We
presen t how It may be used For e f f i c i e n t l y preparh~g documents to be
pr in ted by TeX.

[] ~ m u m m l x ~

TeX [6] is w e l l k n o w n f o r t he t y p e s e t t i n g q u a l i t y o f the d o c u m e n t s i t
p r o d u c e s , b u t i t is also k n o w n f o r i ts i n p u t l anguage , w h i c h Jis no t
u s e r - f r i e n d l y .

In these s y s t e m s , the t r e n d is to make TeX m o r e o r less i n t e r a c t i v e .
O u r a p p r o a c h is to use a t r u e i n t e r a c t i v e s y s t e m in c o n j u n c t i o n w i t h

2. The d~oument model
3. The Gr i f e d i c t

- b +/~/b 2- 4ac
x = (1.1)

2a
t ions , w e p r e s e n t the d o c u m e n t model on w h i c h G r i f is
la in p r i n c i p l e s o f t he i n t e r a c t i v e e d i t o r . The w a y
t i n t e d is t hen d e sc r i be d , and f i n a l l y w e p r e s e n t t w o
p o i n t s f o r u s i n g TeX in such an i n t e r a c t i v e

.~t m o d e l
iiiii 4 . Pr in t in~ doouments (L1) x - - b + bV/~'- 4 a °

ii~!iii 5. TeX as a p o s t p r o o e s s o r ::::?:::::::::::::::::::::::?:::::::::::::::: 2a :~:!:!:!:~::~:!:~i!:~:~:~:i~:~:~:~:
iii!iil s ~ i f ~ a p~p~oo~o~ ili!i::ii::ili~!::~i::ii~ii~i:::::::::.-:~i~ii::i~iiiii~ii~i::l . liiiiiii!iiiiii~!~iii~!::i~i!~i::
::::gi fg::::ig::::{::i::i~g=::::::=:=i~ggiiiglg::ii~i!::i:::=::ilit (2.1) r ~ f(t) dt = I -i"i"Ji'i'ggi:=i:=:=i~::=ii ! ~::~::~: ~:::. oo :::::::::::::::

Figure 2: A Gri t s c r e e n .

156

As declared in this generic structure, a Paper consists of a Title which is a
simple text (a character string), Authors which may be one or more (each Author
is a simple text), the Address (a sequence of Address_Lines), the Abstract, which
is a simple text and finally the Sections, which are one Section or more. Each
Section consists of a Section_Title, which is a simple text and the Section_Body,
which is a list of Sect_Elem's. A Sect_Elem may be a Paragraph, which is a simple
text, or a Displayed~ormula, which is another structure called Math (generic
structure for formulae).

The structure compiler produces a table of names which is used by the F
compiler to produce the corresponding conversion table. For the class Paper we
use the following conversion rules (\12 represents a new line and \134 represents
a back slash):

Paper :

Title :

BEGIN
CREATE '\documentstyle{article}\12' HEAD;
CREATE '\begin{document } \ 12';
CREATE ' \ 12 \end { document } \ 12' TAIL;
END;

BEGIN
CREATE '\title{';
CREATE '}\12' AFTER;
END;

Authors : CREATE '\author{';
Author : IF NOT LAST CREATE '\134\134\12\and\12' AFTER;
Address_Line : CREATE '\134\134\12' BEFORE;
Address : CREATE '}\12' AFTER;
Abstract : BEGIN

CRE ATE ' \ maket itle \ 12 \ begin { abstract } \ 12';
CREATE ' \ 12\end {abstract } \ 12' AFTER;
END;

Displayed_Formula :
BEGIN
CREATE '\12\begin{equation}\12';
CALL MathTex FOR Math;
CREATE '\12\end{equation}\12' AFTER;
END;

TEXT_UNIT : TTRANSLATE
BEGIN
'TeX' : '\TeX';
'\11' : '\ '{e}';
' \3z' : 'V'{eY;
END;

157

As we can see, the set of rules associated with the element Paper creates three
LATEX commands:

\ d o c u m e n t s t y l e { a r t i c l e } at the head of the file,
\begin{document} before the Paper contents and
\end{document} at the tail of the file.
The rules for element Title creates \ t i t l e { before and } after and so on. We

can also see the condition IF NOT LAST which is used within the rule for the
Author element.

In Displayed_Formula we find the CALL statement which has two arguments.
The first argument (MathTex) is the name of the conversion table that will be
used for the generation of formulae. The second (Math) is the name of the generic
structure of formulae.

As we can see the TEXT_UNIT (or Text as indicated in the structure) is a
basic element of the structure. There are other basic elements such as SYM-
BOL_UNIT, GRAPHIC_UNIT and PICTURE_UNIT. The rule associated with
the TEXT_UNIT is Text Translation by which we translate three strings from
their Grif representation to their La W meaning.

Later on, for any paper generated by Grif, the conversion will produce the
following LATEX source:

\documentstyle{article}
\begin{document}
\title{GRIF: AN INTERACTIVE ENVIRONMENT FOR \TeX}
\author{Vincent QUINT\ \
\and
Ir\ '{e}ne VATTON\\
\and
Hassan B E D O R \ \
Laboratoire de GV{e}nie Informatique\\
Universit\'{e} de Grenoble\\
BP 68, 38402 St Martin d'H\'{e}res}
\maketitle
\begin{abstract}
Several attempts have been made for making \TeX\ more ...
the structure and presentation of documents edited.
\end{abstract}
\section{Presentation}
\TeX\ [6] is well known for the typesetting quality of ...
system in conjunction with \TeX.
\begin{equation}
x=\frac{-b+\sqrt{b ^{2}-4ac}}{2a}
\end{equation}

158

8. C o n c l u s i o n

This project has been made possible due to the rich model upon which Grif is
based. The high level document model allows it to be readily adaptable to any
kind of document and to several formatters.

Prior to the project presented in this paper we had performed an analogous
experiment with a Troff-like formatter, but due to the low level of that formatter
only the first approach presented above has been taken. We are now planning to
do the same kind of work for Mint, with the same objective: to take advantage of
all functions of a formatter through Grif, so making the user-interface convivial.
This should be easily done, for the design of both Mint and LATEX , have been
inspired by the same model: Scribe [10].

B ib l iography

[1] M. Agostini, V. Matano, M. Schaerf, M. Vascotto, "An Interactive User-
Friendly TEX in VM/CMS Environment". TEX for Scientific Documentation,
D. Lucarella ed., Addison-Wesley, 1985, pp. 117-132.

[2] L. Aiello, S. Pavan, "Towards a friendly workstation for ~ ' . Internationaler
Kongress fur Datenverarbeitung um Informations Technologie, Berlin, 1982.

[3] J. Andrg, Y. Grundt, V. Quint, "Toward an Interactive Math Mode in TEX".
TEXfor Scientific Documentation, D. Lucarella ed., Addison-Wesley, 1985, pp.
79-92.

[4] G. Canzii, G Degli Antoni, S. Mussi, G. Rosci, "SDDS: Scientific Document De-
livery System". TEX for Scientific Documentation, D. Lucarella ed., Addison-
Wesley, 1985, pp. 15-25.

[5] D. Foata, J.-J. Pansiot, Y. Roy, "Stratec and a Rationalized Keyboard for
Inputting TEX". TEXfor Scientific Documentation, D. Lucarella ed., Addison-
Wesley, 1985, pp. 105-116.

[6] D.E. Knuth, The TEXbook, Addison-Wesley, Reading, Massachusetts, 1984.

[7] L. Lamport, LATEX: A Document Preparation System, Addison-Wesley, Read-
ing, Massachusetts, 1986.

[8] V. Quint, "Interactive Editing of Mathematics". PROTEXT I, Proceedings of
the First International Conference on Text Processing Systems, J.J.H. Miller
ed., Boole Press, Dublin, 1984, pp. 55-68.

[9] V. Quint, I. Vatton, "Grif: An Interactive System for Structured Document
Manipulation". Proceedings of EP'86, J.C. van Vliet ed., Cambridge University
Press, 1986.

[10] B. Reid, "A High Level Approach to Computer Document Formatting". Proc.
7th Annual A CM Symposium on the Principles of Programming Languages,
January 1980, pp. 24-31.

A B S T R A C T M A R K U P I N TEX

Johannes ROHRICH

Universitiit Karlsruhe
D-7500 Karlsruhe 1, FRG

Extended Abstract

The purpose of abstraction in document markup schemes and languages is dis-
cussed. Many abstraction concepts found in modern software engineering may also
be useful in document markup, e.g. abstraction from (1) machines and devices,
(2) data representations, (3) procedural aspects, (4) concurrency--which occurs
in documents in the form of several interleaved streams of text--and (5) small vs.
large concepts such as document architecture and the managing of large amounts
of related documents.

However, while there is a common understanding of programming language
semantics today, the semantics of markup languages are not yet well defined.
We discuss semantic models for documents and alternatives to formally define
the semantics of markup languages, based on what we would like to call a doc-
uments' meaning. We argue tha t - -a t least in the area of scientific publication--
there is no really strong interaction between the meaning of a document and its
(typo)graphical representation. This enables us to specify a scheme of five layers
of abstraction: (1) device abstraction, (2) size abstraction, (3) font family abstrac-
tion, (4) style abstraction and, (5) abstraction from the layout of a document on
paper or CRT displays. The last layer only preserves the structured docuraent
contents which we consider its meaning.

Unfortunately, TEX markup only provides device abstraction. The other four
layers are mixed together instead of being supported by corresponding syntactic
and semantic language concepts. Examples of this as well as of the mixing between
imperative vs. declarative, implicit vs. explicit, and procedural vs. declarative
markup styles in TEX and LATEX are given.

The second part of the contribution deals with the MAX system that has
been developed at the University of Karlsruhe. MAX is a declarative, SGML-
like markup language, and a document compiler bearing the same name. The
objective of the development of MAX has been to provide what may be called
"grey" documents, i.e. documents that can be visualized and printed on a wide
variety of distibuted devices using almost arbitrary formatters--namely TEX , Troff
under UNIX, Runoff under VMS, Reuf under BS2000, etc. MAX markup is easy
to learn and to use, it frees the user from the burden of learning a new markup

160

language every year, but gives him/her the opportunity to produce high quality
output with TEX or similar composing systems. On the other hand, the user may
visualize the contents of a MAX document on locally available equipment.

One of the major problems that must be solved in such a distributed setting is
that of providing essentially the same family of typefaces in the formats required
by each of the available document formatting systems. Therefore, we are devel-
oping tools that convert between METAFONT, UNIX vfont, Imagen and Impress
font formats. A facility to interactively manipulate glyphs is also provided.

We are now addressing the problem of providing essentially the same, multi-
lingual hyphenation mechanism in all of the available formatters.

Des ign ing a n e w typeface w i t h METAFONT

Richard Southal]

Laboratoire de typographie informatique
Universit6 Louis-Pasteur
67084 Strasbourg, France

Abstrac t

This paper summarizes the conclusions reached as a consequence of two years'
work on the design of an original typeface using METAl:ONT. While being in one
sense unsuccessful, in that the design of the typeface is still far from complete,
the experience has been instructive in pointing up a number of discrepancies
between the underlying assumptions about the design process that professioJ~al
type designers bring to their work and those current in the TEX world.

These discrepancies, and what appear to be the reasons for them, are discussed.

1 T e r m i n o l o g y

The computer science literature on document preparation has traditionally been
bedevilled by the misuse of terms carelessly borrowed from the existing technolo-
gies of typography and type manufacture. The word font, for example, is used
indifferently in the literature to refer to three or four fundamentally distinct ,en-
tities: this leads to a good deal of confusion in discussions about typefaces, type
design and similar subjects. So the first thing we need to do is to define a useful
and consistent terminology 1.

1.1 Typefaces and character images

A document is an assembly of mechanically-produced marks on a substrate. The
marks that make up the verbal components of the document are character images,
and it is these images that the reader sees. We need to define terms that allow us

1 This terminology is a shortened form of the fully-worked-out version proposed
in Designing new typefaces with M E T R F O N T (Southall, 1985b).

162

to discuss how character images are produced, and what part the type designer
plays in deciding on their appearance.

A script is a set of characters used to write one or more languages.

A typeface is a set of distinctive, visually related shapes that represent some or
all of the characters of a script and are intended for mechanical reproduction.

Each of the character shapes in a typeface has an identity, which is that of the
character it represents. The typeface as a whole - the set of shapes with different
identities - has a number of visuat attributes. It is the visual attributes of a
typeface that distinguish it from other typefaces.

The visual attributes of a typeface are of two kinds: stylistic and functional.
Stylistic visual attributes are such things as seriffedness and cursiveness; func-
tional visual attributes are such things as boldness and condensedness. Typeface
classification schemes such as DIN 16 518 : 1964, and aesthetic criticism of the tra-
ditional kind, deal with the stylistic visual attributes of typefaces. The functional
visual attributes of typefaces are those that make different typefaces useful in
differentiating the components of complex text.

A family of typefaces is a set of typefaces with similar stylistic visual attributes
and differing functional visual attributes 2.

The character images in a document have graphic attributes that give them their
appearance. The appearance of character images realizes the visual attributes of
the typeface the images represent.

1.2 Fonts

The character images (as well as the other marks) in a mechanically-produced
document are made by a marking device. This contains a marking engine 3 that
uses a marking process. Thus the character images in the document that con-
stituted the camera-ready copy for this paper were made by a Canon CX-2000
laser marking engine. This was inside a Canon LBP-8 A1 laser printer driven by a
Telmat SM90 minicomputer: these two machines together made up the marking
device. The marking process was the familiar electrographic one, in which a laser
writes on the surface of an electrically-charged semiconducting drum which then
transfers toner to the surface of plain paper.

2 On this definition, the Computer Modern family of typefaces (Kmlth, 1980)
is a long way from being the traditionM nuclear family of roman, italic and
bold. The stylistic attributes that relate the sansedf or the t y p e w r i t e r face
to Computer Modern Roman are not at all easy to recognize, except in some
features of certain characters.

3 The term marking engine, like much else that has helped to clarify thinking in
this field, is due to Brian Reid.

163

An engine like the Canon CX-2000 has no knowledge of its own about the shapes
of character images. Somewhere inside the marking device there need to be sets
of instructions to the marking engine that tell it how to make the images that
realize the character shapes of a typeface in a particular size or range of sizes.
These sets of instructions are the fonts.
Thus, in the TF_~-METIqFONT system, there is the Computer Modern family of
typefaces, of which cmrl0 is a member. The character shapes of cmrl0 are de-
scribed in cmrl0, mf and its associated METFIFONT programs. Running these pro-
grams with mode=imagen and mag=l produces a 'generic font file' cmrl0.300gf:
this is not a font, but an intermediate in the font production process. Running
g f topx l on cmrl0. 300gf produces the pixel file cmrl0.1500pxl. This is a font: it
contains instructions to the Canon printer (which uses the same marking engine
as the Imagen printer for which the font was developed) about how to produce
character images that realize the visual attributes of the typeface cmrl0.

Notice that the font is device-specific: not only is it made for a particular writing
resolution (300 dots per inch in this case: the fact that the extension of the font
file name is . 1500pxl is a peculiarity of the system) but the mode information that
the programs read assigns values to the MI:TICIF'ONT variables blacker, fillin
and o_correction that are appropriate for the Canon engine. These variables
would be assigned different values if the font were being made for the Xerox 1200
marking engine, which has the same writing resolution of 300 dots per inch as the
Canon but very different marking characteristics.

2 W h a t is design?

In order to be able to evaluate METAFONT's usefulness as a typeface design tool,
we need to find out what is involved in designing a typeface. Before doing this, it
is important to get a clear idea of what the word 'design' implies in this context.

Design, like font, is a word whose meaning in the vocabulary of computer science
tends to be rather different from the meaning it carries in everyday life. In normal
use, at least among designers, designing means making something new: in the case
of a typeface, a new set of shapes for the characters of a script, that are not the
same as any set of shapes for the same characters that have existed before. Used
in relation to computer-produced documents, the word often appears to mean
more or less exactly the opposite: the design activity seems to be intended to
produce something that resembles an existing object or set of objects as closely
as possible.

In this paper, I use adaptation for the second of these two meanings, and keep
design for the first. Thus I would consider Computer Modern Roman to be an

164

adaptation of the Lanston Monotype Company's Modern Series 8A (Knuth, 1980,
p. 2), and the letters in the METAFONT logo to be an original design.
The important difference between design and adaptation, in the context of a
discussion about type production, is that in the second case the typeface already
exists: the adapter does not have to decide what shapes the characters ought to be.
Nor is this all: character images exist as well, that arise from fonts that have been
fully developed to be technically satisfactory, even if for use in another medium.
The results of all the decision-taking that went into the design of the original
typeface and the production of the original fonts are available in the material from
which the adapter works. It is not surprising that both the nature and the amount
of the work involved in type design and font production is misapprehended, if the
difference between design and adaptation is misunderstood.

3 D e s i g n i n g a t y p e f a c e

The end product of type manufacture is a series of fonts.

To be worth making, these fonts must be of good technical quality - that is,
they must give rise to sets of character images that are of good technical quality.
To be useful, the fonts must give rise to character images that realize the visual
attributes of a particular typeface. The type manufacturing process thus has two
parts: one in which the visual attributes of the typeface are decided upon, and
another in which the fonts that cause these attributes to be realized in character
images are produced. What goes on in the first part of the process is type design;
what goes on in the second part is font production.
In traditional type manufacture (which means, in the context of the current discus-
sion, in the era before METI=t~ONT), these two parts of the manufacturing process
have usually been the responsibilities of different people. The type designer defines
the visual attributes the typeface is to have; the font producer makes fonts that
give rise to character images whose graphic attributes gives them an appearance
that realizes the visual attributes of the typeface.

3.1 Type designer and font producer

It is the type designer's task to decide on the appearance of the typeface, and
to characterize its appearance by defining its visual attributes. The designer's
decisions are almost always expressed in the form of drawings of characters, whose
shapes realize the visual attributes the typeface is intended to have.

It is very important to understand the role that the designer's drawings play in
the type production process. Except in a very few cases, they are not patterns

165

that tell the font producer what shapes the character images ought to be: they
are models that show the producer what the images are intended to look like.

This is because the font producer does more than copy the designer's drawings.
The font producer's objective is to make fonts that give rise to images of good tech-
nical quality that realize the visual attributes of the characters on the designer's
drawings. The instructions contained in the font have to take into account the ef-
fects of the human visual system on the way the character images are perceived, as
well as the effects of the marking process on the shapes of the images themse].ves.

The effects of the visual system

It is easy to state the criteria for good technical quality in a set of character images:
they should be consistent in apparent size, weight and spacing. This consistency is
in the appearance of the images, not necessarily in their shape; in order to appear
to be consistent, the actual shapes of the images should allow for the visual effects
that occur when they are perceived.

The essential feature of the character images in text is that they are small: one
way of looking at the history of type manufacture is to see it as the development
of techniques for the rapid multiplication of accurately-defined small shapes. In
the perception of small shapes, the human visual system has an effect on what is
perceived that is quite different from the effect it has in the perception of large
shapes: adjacent parts of a small shape interact with each other on their way
through the system. Thus, for example, a square looks larger than a circle Whose
diameter is the same as the side of the square; parallel-sided strokes that meet at
an acute angle look as if they get wider as they approach each other. The effects of
these visual phenomena on the perception of small character shapes are discussed
by Harry Carter (in footnotes in his edition of Fournier's Manuel typographique as
well as in his 1937 paper) and by T. L. De Vinne (Carter, 1930, 1937; De Vinne,
1900).

The effects of the marking process

It often seems to be supposed that the effects of the marking process ceased to
be important when digital type-composing techniques were introduced. This is
far from being the case. One has only to compare output from the Canon CX-
2000 and the Xerox 1200 electrographic marking engines, already mentioned, to
see how much the differences in present-day marking processes can affect the
shapes of the character images they produce. The simple picture that Knuth
described in his Gibbs lecture in 1978, of the page of a book as ~a huge matrix
of 0's and l 's ' (Knuth, 1979: Mathematical typography, p.16), omits an important
consideration: neighbouring l 's interact with each other, on the physical as well
as on the perceptual level 4.

4 Knuth has subsequently advanced from this elementary view (Knuth, 1985).

166

The font producer's task

Because the marking process has an effect on the shapes of the character images
the font gives rise to, the shapes of the images are different from the shapes that
are represented in the font. Equally, because they have to take into account the
effects of the human visual system, the shapes of the character images (and, a
fortiori, the shapes represented in the font) are not the same as the shapes of
the characters on the designer's drawings. Because the effects that enter into the
perception of small and large shapes are different, large shapes change their ap-
pearance when they are reduced: a small shape that has the same visual attributes
as a large shape will not be simply a smaller version of it. Thus the production
of technically satisfactory fonts involves the font producer in interpreting the de-
signer's drawings, rather than simply reproducing them; and because different
marking processes affect the shapes of character images in different ways, this
interpretation has to be done differently for each marking process for which fonts
are being produced.

The designer's drawings

The shapes on the drawings that the designer gives to the font producer are not
made in a single pass, but are themselves the subject of considerable development
work (Dwiggins, 1940). It is not until they are consistent in appearance, and
express a clear intention on the part of the designer, that the designer's drawings
are useful to the producer. (The kind of problems that arise when drawings are
given to the font producer before this clarity of intention has been achieved are
vividly described in John Dreyfus' account of the production of the Cranach Press
italic: Dreyfus, 1966).

In the past, the typeface character shapes on the drawings have been developed
empirically, by a process that is also an essential part of font production: iterative
testing and modification. Since the shapes are modified by working over them by
hand, and the testing usually done in the early stages by putting the drawings
up on the wall and looking at them, the designer's activity tends not to look
like a process in the usual sense of the word; consequently, the fact that it is a
process, with certain characteristics that are important in making it effective, is
easy to overlook. These characteristics are a high degree of interactivity in the
modification phase, and a short cycle time in the testing phase.

3.2 The importance of empirical testing in type manufacture

The knowledge that type designers and font producers have had, both about the
effects of marking processes and the characteristics of the human visual system,
has mostly been intuitive and qualitative rather than explicit and quantitative.
Even though the ways in which marking processes affect the shapes of character
images are fairly easy to understand, the extent to which a particular process

167

will affect the shape of a particular image is very hard to predict. Similarly, the
kinds of visual effect that occur in the perception of character images are well
known, but the way in which they will affect the appearance of a particular shape
is difficult to tell without making the shape and looking at it. The development
of technicMly satisfactory fonts for a new typeface, like the development of the
designer's drawings, has therefore traditionally been carried out by iterative mod-
ification of the font and empirical testing of the character images it produces; and
what is tested is essentially the appearance of the images rather than their shapes.

It needs to be made clear, perhaps especially to an audience from the computer
science community, that the empirical nature of the type manufacturers' working
methods is not due to technical backwardness, or to an anti-technological attitude,
on their part. The fact is that not enough is yet known about the human visual
system to enable us to construct a theory that will predict exactly, from the shape
of a character image, what its appearance will be. Nor is our knowledge of the
characteristics of any marldng process sufficiently detailed to allow us to predict
exactly what shape a particular set of instructions in a font will give rise to. In
these circumstances, empirical methods are the only ones that are effective for
font development, if the visual quality of the product is to be maintained.

3.3 What does a type manufacturing system need?

The picture we get of type design and font production in the pre-METAFONT era,
then, is one in which the subject-matter of the work is the appearance of clhar-
acter images; where communication between designer and producer is carried on
by means of exchanges of graphic objects; and in which the desired appearance of
both drawings and character images is arrived at by empirical testing and modi-
fication, using processes that are at their best when they are most interactive 5.

Since this picture is so unlike the one that METAFONT offers us, we need to ask
which of its features are essential to a successful type manufacturing system: that
is, one that produces fonts of good technical quality that give rise to character
images having the required appearance. It is hard to answer this question by
looking at unsuccessful type manufacturing systems from the past, because such
systems have not usually survived or been described in published work 6.

What we can say is that type manufacturing systems have produced good results,
and have been congenial to the designers working with them, to the extent that the
designers have felt themselves to be in control of the appearance of the character
images that were the final product of the system. The reservations expressed
by the Dutch designer Jan van Krimpen about the success of his work for the

5 A more extensive justification of this picture is in Section 3 of Designing new
typefaces with METRFONT (Southall, op. cit.).

6 Oddly enough, the situation with unsuccessful type-composing systems is quite
different: these have an extensive and easily accessible literature.

168

Monotype Corporation are significant in this respect (van Krimpen, 1972). In
this respect, too, it is interesting that recently, where electronic systems have
allowed designers to work directly on the pixel grid (that is, in our terms, to
be their own font producers), the designers have grasped the opportunity with
enthusiasm. Examples of the success of this working method are the fonts used
for telephone directory composition in France and the United States of America,
designed by Ladislas Mandel and Matthew Carter respectively (Cooper Union,
1982).

4 METAFONT as a des ign tool

4.1 Making type with METAFONT

In a type manufacturing system that uses METF:IFONT, the shapes of characters
are described by programs written in the METAFONT language. The METAF©NT
interpreter reads these programs and produces a 'generic font file': this is essen-
tially a set of run-length encoded descriptions of character bitmaps at a particular
resolution. For each run, the interpreter needs to know the writing resolution of
the device for which the output of the run is intended, as well as other information
about the device: it finds this out by reading preloaded mode information. Fonts
are made from the generic font files by the gftopxl or gftopk programs, which
are part of the 'METAFONTware' software.

Knuth's view of his objectives for the METAFONT system seems to have remained
essentially unchanged between 1978 and 1985. 'One of my main motivations was
the knowledge that the problem would be solved once for all, if I could find a
purely mathematical way to define the letter shapes and convert them to discrete
raster patterns ... although the precision of the raster may change, the letter
shapes can stay the same forever, once they are defined in a machine-independent
form' (Knuth, 1979: Mathematical typography, p. 17). %Ve now have the ability to
give a completely precise definition of letter shapes that will produce essentially
equivalent results on all raster-based machines' (Knuth, 1986, p. v). The new
implementation of METAFONT has solved most of the rasterizing problems that
troubled the old system: the technical quality of the new Computer Modern on
medium and low resolution marking devices is enormously improved.

In making Computer Modern, METFIFONT is playing the role of font producer.
Each size of each typeface in the Computer Modern family has a driver pro-
gram (cmrt0.mf, for example). This program sets the values of a large number
of dimensional parameters for the typeface, and then reads a series of programs
(roman.mr, romanu.mf, romanl.mf and so on) that describe the character shapes
in terms of the parameters that have been set by the driver program.

169

This is where the 'meta-ness' comes in: the same programs, read by different
driver files, produce characters of very different appearance (from flvo point to
ten point sanserlf bold extended, t y p e w r i t e r face and so on) according to the
settings of the parameters.

There are a few parameters (blacker , f i l l i n and o_cor rec t ion) that go some
way towards characterizing the marking process used by the marking engine for
which the font is intended. The values for these parameters are part of the mode
information that is read at the beginning of the run.

Knuth does not exclude the possibility of interactive modification of the fonts
that METAFONT produces, but sees this only as a 'tidying-up' expedient (Knuth,
1986, p. 195).

4.2 Designing with METAFONT

Knuth's Computer Modern is an example, extraordinarily fully worked out, of
the adaptation of a set of existing typeface designs to the METAFONT system.
Designs that have been produced with the old version of METAFONT by other
workers (Tom Hickey's CHEL, for example, or Georgia Tobin's MF Roman) are
also adaptations. To find out about METAFONT's useability as a design tool, we
need to find instances of its use for original design.

The designer working with METAFONT has two options. One is to make a set
of fully-developed drawings of character shapes in the traditional way; write pro-
grams, or cause programs to be written, that describe the shapes on the drawings;
and then alter the programs or cause them to be altered until the output they
produce is acceptable. While not being exactly the same as the adaptation of an
existing design (because fonts derived from the drawings do not yet exist) this
way of working is something of a halfway house between design and adaptation.
The task of the programmer, or of the designer in the programming phase of the
work, is to express in METAFONT's terms the character shapes that already exist
on a set of drawings, rather than to develop the shapes using METAFONT itself.

The second option before the designer working with METAFONT is to exploit
the characteristics of the system: to use METAFONT itself to help develop the
character shapes.

The Euler project

The first of these two options is the one that Hermann Zapf adopted in his de-
sign of the Euler typeface for the American Mathematical Society. Zapf made
the drawings, and the Digital Typography Group at Stanford wrote the META-
FONT programs. In the Euler project, Zapf was treating the Digital Typography
Group as a font production team of the traditional kind; the problem that :faced
the programmers in the group was essentially to teach METAFONT how to do a
competent job in its role as font producer.

170

This turned out not to be particularly easy. The new version of the language
had not been conceived when the Euler project began, and the initial phase of
describing the character shapes on Zapf's drawings in terms of the virtual pens of
the old METRFONT presented great difficulties. The results of the first at tempts
were rejected by the designer; a program was then developed that allowed the
characters' outlines to be described to the computer by means of a digitizing
tablet. Writing such a program was a great deal more difficult with the old META-
FONT than it would have been with the new, because of the change of emphasis
from pen tracks to character outlines in the new version.

The story of the Euler project is told by David Siegel, a member of the Digital
Typography Group (Siegel, 1985).

The nmt design

In making the nmt design with METRFONT, I decided to take the second of the
two options described above, and work as closely as possible with the computer.
This was partly due to the fact that I had just come from using a computer-
based font design tool that had many of the virtues (in speed and interactivity)
and all the defects (in terms of the lack of generality of the product) of font
design systems in general; partly because the studio facilities that would have
been needed to make fully-developed character drawings were not easily available
in the Computer Science Department at Stanford.

The design was begun in November 1983, using the old version of METAFONT.
This early work was abandoned in February 1984; the overall form that the new
version of the language would have was becoming clear by that time, and there
was evidently no point, in struggling to define the outlines of character shapes by
means of the tracks of virtual pens whose centres were offset from the outlines,
when it would soon be possible to define the outlines directly.

Work on the design was begun again in the summer of 1984, during the METR-
FONT course at Stanford (Knuth, 1984); suspended between September 1984 and
April 1985, while I was in Europe; continued, with a very much developed ver-
sion of the language, between April and October 1985 at Stanford, and then at
Strasbourg until the beginning of June 1986.

It can be seen from this chronology that nmt and the new version of METR-
FONT have grown up together. This has had its disadvantages. Getting on with
the design has tended to take priority over updating the low-level METAFONT
routines in the character programs to take advantage of improvements to the
language. The consequence is that my programs, on the whole, neglect facilities
that have been added to the language and to plain.mr since the beginning of
August 1985. (It was not until the beginning of June 1986 that version 1.0 of
METRFONT was installed at Strasbourg.)

171

abcdef ghijlmnopqrst uvw
nanbncndnen|ngnhnlnjnlnmnnnonpnqnrnsnt nunvnwn
o~obocodoeelogohoiojo/omonooop~or~otouovowo
hamburqefons

abcdefghijlmnopqrstuvw
nanb ncndnenfngnhninjn lnmnnnonpnqnrnsntnunvnwn
oaobocodoeo fogohoiojo|omonooopoqorosotouovowo
hamburgefons

abcdefghijlmnopqrstuvw
nanbncndnenfngnhninjnlnmnnnonpnqnmsntnunvnwn
oaobocodoeofogohoiojolomonooopoqorosotouovowo
hamburgefons

abcdefghijlmnopqrstuvw
nanbncndnenfngnhninjnlnmnnnonpnqnrnsntnunvnwn
oaobocodoeofogohoiojolomonooopoqorosotouovowo
hamburgefons

ab cdefghijlmnop qrstuvw
nanbncndnenfngnhninjnlnmnnnonpnqnrnsntnunvnwn
oaobocodoeofogohoiojolomonooopoqorosotouovowo
hamburgefons

abcdefghijlmnopqrstuvw
nanbncndnenfngnhninj nlnmnnnonpnqnrnsntnunvnwn
oaobocodoeofogohoiojolomonooopoqorosotouovowo
hamburgefons

abcdefghijlmnopqrstuvw
nanbncndnenfngnhninj nlnmnnnonpnqnrnsntnunvnwn
oaobocodoeofogohoiojolomonooopoqorosotouovowo
hamburgefons

abcdefghijlmnopqrstuvw
nanbncndnenfngnhninjnlnmnnnonpnqnrnsntnunvnwn
oaobocodoeofogohoiojolomonooopoqorosotouovowo
hamburgefons

Figure 1: nmt in nominal sizes from 3 to 10 pt, reduced from
\magstep2.

172

It should also be pointed out that the nmt programs do not use the pseudo-pens
of new METf:t~ONT. Some of the problems I had with getting the stroke-drawing
routines to behave well at low resolution would probably have been avoided if I
had used these pens; on the other hand, I cannot see at present how to use them
to make what I consider to be technically important features of certain characters,
particularly small v and w.

The main motive behind the development of nmt has been to make METRFONT do
as good a job as possible of font production for actual marking devices. There are
two main reasons for this. In the first place, the technical quality of the Computer
Modern fonts that were available for medium-resolution devices in 1983, when I
began work on the design, left a great deal to be desired. I felt it was important
to find out whether it was possible to make a technically satisfactory medium-
resolution font with METRFONT, since no-one had succeeded in doing so at that
time.

In the second place, I felt that a type design method that was aimed at an ideal
marking device ran the risk of giving every user of a real marking device more or
less of a bad deal. It seemed to me that the interests of users, in particular those
of users of medium-resolution marking devices, were being neglected in favour of
an approach to design that ignored the characteristics of marking processes that
did exist while aiming at an ideal process that did not exist.

I have also taken the view that one should not impose too high a lower limit on
the writing resolution of the devices for which a design is intended. The resolu-
tion of a 'high-performance' cathode-ray tube display, in terms of the number of
addressable points along the line, is after all no more than that of an Epson FXS0
printer in graphics mode. What characters there are in nmt perform reasonably
well down to 7 pixels x-height: this corresponds to a nominal size of 2.88 pt or
1.012 mm on the Canon printer, and 5.78 pt or 2.031 mm on the Numelec bitmap
terminal.

4.3 Font optimization and 'device-independent' design

In making a technically satisfaztory font for a medium-resolution raster-scan
marking device, every feature of the character shapes has to be conceived of
in terms of the characteristics of the marking process the device uses and the size
and shape of the the pixels it produces. The device's pixels are used as building
blocks for the character shapes.

With this approach, it is relatively easy to achieve the evenness of apparent weight
and spacing of the character images that are important in a technically satisfac-
tory design. On the other hand, though, the character widths become completely
device-dependent: there is no device-independent ' tfm width' that expresses the
width of a character in absolute terms.

173

It is hard to see how device-independent widths for the characters of an original
design can be arrived at, if the objective in making the design is to optimize
the performance of the fonts it produces. In p l a in .mr , the beg±nchar macro
expects the device-independent width and height of a character to be known at
the beginning of the program that describes it (Knuth, 1986, p. 275). This seems
to me to reflect the conceptual confusion between adaptation and design that I
have already mentioned. In adapting an existing typeface, the absolute dimensions
of the characters are indeed known before the adaptation is begun, and there is
no problem in incorporating them in the programs. In making an original design,
on the other hand, where the objective is to optimize font performance, the only
way to develop the character shapes is to look at the marks made by particular
marking devices. In doing this, it is difficult to describe the characters' dimensions
otherwise than in terms of the dimensional units that those devices use. The
dimensions of each character become consequences of the way the character is
constructed for the marking device in question, and hence are not known at the
beginning of the character program.

The question whether or not it is possible to make technically satisfactory fonts
for use on medium-resolution devices from designs whose character widths are
defined in device-independent terms is an interesting one for the TEX community.

The design of every such font has to begin with the definition of a set of devJ[ce-
dependent widths for the characters of the typeface. These widths need to be
allocated in such a way that the cumulated differences in character positioning
with respect to the device-independent widths amount, over the length of an
average word, to less than about a quarter of the average interword space. If tiffs
can be done, the characters within a word can be properly spaced without the
interword spacing becoming too irregular.

The difficulty is, of course, that both the length of the average word and its
composition, in terms of the frequencies of occurrence of different characters,
vary between one language and another. A set of character width allocations
that produce good results in French text will not work so well in English or in
German text. In the German text, also, because the words tend to be longer, the
cumulated differences in character positioning will be greater and there will be
fewer interword spaces to absorb them.

I cannot see any way out of this difficulty at present.

4.4 Meta-ness in nmt

In the Computer Modern family of typefaces, the specification of each size of each
typeface in the family begins with the assignment of explicit values, most of them
absolute dimensions, to a large number of variables in the character programs
(sixty-two in cmrl0 .mr). This approach is entirely appropriate for a situation of

174

he eighteenth centur was also something more it was and
above all in rance the nurser of the modern world dens
and social forces the seeds of which were doubtless sown much
earl ier can be seen now pushing above the surface not in the
neatl arranged rows of the careful gardener but in the haphaard
tangle of nature et the can be seen and distinguished the
field is no longer a seedbed but it is not eta jungle and a
pattern is discernible

he e igh teen th centur w a s also someth ing more it was and
above all in rance the nurser of the modern world dens
and social forces the seeds of which were doubtless sown m u c h
earlier can be seen n o w p u s h i n g above the surface not in the
neat l a r ranged rows of the careful gardener but in the haphaard
tangle of na ture et the can be seen and dis t inguished the
field is no longer a seedbed but it is not e t a jungle and a
pa t te rn is discernible

he eighteenth centur was also something more it was and
above all in rance the nurser of the modern world dens
and social forces the seeds of which were doubtless sown much
earlier can be seen now pushing above the surface not in the
neatl arranged rows of the careful gardener but in the haphaard
tangle of nature et the can be seen and distinguished the
field is no longer a seedbed but it is not e t a jungle and a
pattern is discernible

h e e i g h t e e n t h c e n t u r w a s a l so s o m e t h i n g m o r e it w a s a n d
a b o v e all in r a n c e the n u r s e r of t he m o d e r n w o r l d d e n s
a n d soc i a l f o r c e s t h e s e e d s of w h i c h w e r e d o u b t l e s s s o w n m u c h
ea r l i e r c a n b e s e e n n o w p u s h i n g a b o v e the s u r f a c e n o t in t h e
n e a t l a r r a n g e d r o w s of t h e c a r e f u l g a r d e n e r b u t in t h e h a p h a a r d
t a n g l e of n a t u r e e t t h e c a n b e s e e n a n d d i s t i n g u i s h e d t h e
f ie ld is no l o n g e r a s e e d b e d b u t it is n o t e t a j ung l e a n d a
p a t t e r n is d i s c e r n i b l e

Figure 2: n m t in 4, 5, 6 and 7 pt, reduced from \ m a g s t e p 2 . The
change in 'colour' between the 4 and 5 pt fonts is marked: between
5 and 6 pt or 6 and 7 pt less marked, but still visible.

175

a posteriori meta-design, in which the appearance of a large number of existing
fonts is to be matched by the output from a single set of METf:IFONT programs.

I have expressed elsewhere my reservations about the practicability of original
recta-design (Southall, 1985a, 1985b). Farther experience with nmt has given me
little reason to modify my earlier views. The problem is still one of defining,
and then testing, the relationships between the parameters that operate at the
character level to change the shapes of character images and the typeface-wide
parameters that affect the size or the appearance of the typeface.

The nmt programs have three parameters: size, boldness and expansion (the two
latter as yet more or less untested). These parameters are intended to be continu-
ously variable between limits. Thus, for example, users can set any character size
they like, between upper and lower limits that depend on the writing resolution of
the eventual marking device~ in increments that likewise depend only on the device
resolution. The sort of problems that this approach gives rise to, and that remain
to be resolved, are demonstrated by the abrupt steps in typographic 'colour' t:hat
occur in the small sizes of nmt when the vertical stroke weight changes by one
pixel.

The fact that defects of this kind have survived so long into the development of
the design provides a further illustration of my contention about the impractica-
bility of original meta-design. The design of every font involves the designer in
a great number of decisions. With METAFONT, these decisions cannot be made
and implemented visually, as they can with a font design tool, but have to be
incorporated into the character programs. Because there is no theory that allows
the correctness or otherwise of such decisions to be predicted in advance of seeing
their results, each of the programs that embodies them has to be tested, by the
production of actual fonts, over the whole range of parameter settings for the
design, for each device for which the design is intended.

Because METAFONT provides no simple way of adding new character shape spec-
ifications to an existing font, the whole set of character programs has to be re-
processed every time the effects of a change to one of them need to be assessed.
This makes the process of font testing a great deal more time-consuming than it
might be.

4.5 METAFONT as a tool for original design

The system described in The METRFONTbook, and implemented by METAFONT
and the present version of p la in . t a r , embodies a particular model of the type
design process. In this model, a set of character shapes are described by ME'l-A-
FONT programs. Character dimensions are expressed in these programs in device-
independent units of measurement. Font intermediates (the . gf files) are produced
by processing the character programs with the METAFONT interpreter, which is
given information about the marking device for which the fonts are intended.

176

The technical quality of the character images the fonts give rise to is assured by
correct programming, using the facilities the ME'FAFONT language provides for
positioning important parts of characters correctly on the pixel grid.

This model seems to me to reflect a situation like the one that obtained with
Computer Modern or Euler, in which fully-developed character shape definitions
already existed when the work of METAFONT programming was started. As a
model for a process of original design, in which the designer develops a series of
technically satisfactory fonts by writing METAF(DbIT programs, it has two serious
drawbacks.

The first of these is that the separate problems of defining the typeface char-
acter shapes and developing the METAF(DNT programs that describe them are
confounded. It cannot be too strongly emphasised that at the beginning of a de-
sign the designer does not know what shapes the characters are going to be. The
designer necessarily has a clear idea of the appearance of the intended typeface:
what is not known is the details of the character shapes that will cause that ap-
pearance to be realized. Finding this out, by making sketches, is the first stage
in making the design. It is difficult to write a program to describe a shape, if one
does not know exactly what that shape is.

The approach to this problem that The METAFON?'book seems to recommend is
to write a program that produces a shape whose overall features are more or less
correct, and then modify the program until the shape it produces is the right one.
The difficulty with this approach is that it removes from the shape-development
process what to the designer is i ts most important feature: direct interaction with
the shape itselfi As Charles Bigelow has said 7 ' . . . the designer thinks with images,
not about images'.

The second serious drawback of The ME'rAFONT-book's model of the design process
is that it assumes that the technical quality of the fonts the character programs
produce can be assured by correct programming. I have argued in section 3.2 above
that the theoretical knowledge required to ensure the correctness of the character
programs in this respect is not yet available. In the absence of such knowledge, the
programs have to be developed by iterative testing and modification. The testing
is done by using the programs to make fonts, and looking at the character images
the fonts give rise to: as I have suggested, the way the present METAFONT system
is configured makes this process a great deal more difficult than it need be. It
consequently suffers, even more than the process by which the character shapes
are developed, from a lack of the responsiveness that is important to its success.

In an internal discussion paper written for the Digital Typography Group at
Stanford in late 1983.

177

Designer-programmer collaboration in METFIFONT design

Knuth suggests that designers and programmers should collaborate in making
typefaces with METAFONT (Knuth, 1986, p. v). While perhaps being practicable
when programs are being written to describe existing character shapes (though the
history of the Euler project suggests some of the possible pitfalls) this a_pproazh
leaves out of account the fact that in original design work the designer does not
know at the time the work is started what shapes the characters should be. The
first stage in making a new design is sketching: the responsiveness of the sketching
tool to the designer's thoughts, already seriously prejudiced in METAFONT design
by the need for shapes to be described as programs, would be further vitiated if
the characteristics of the shapes in the sketches had to be explained to another
person.

5 Conclus ion: font des ign and t h e c o m p u t e r sc ience c o m m u n i t y

In traditionM type manufacture, right up to the present day, every advance in
marking technology has been followed by the production of new fonts that op-
timize the rendering of existing typeface designs with the new techniques. This
continual revision of their production processes involves the type manufacturers
in huge amounts of work. They are obliged to undertake it, because the mainte-
nance of technical quality is the only way to ensure a continued market for their
products: bad type won't sell.

The attitude of the computer science community to developments in marking
technology is epitomised by Knuth's statement that 'We now have the ability to
give a completely precise definition of letter shapes that will produce essentially
equivalent results on all raster-based machines' (Knuth, 1986, p. v) and to font
design by Eliyezer Kohen's comments in the introduction to his description of
the Picor type design system: 'The systems for this purpose are . . . too tedious
(bitmap editing takes a lot of time)' (Kohen, 1985).

Because of the idealist attitude towards real marking processes expressed in
Knuth's statement, consideration of the problems of font design is out of the main
current of computer-science thinking: the consequence is that no good computer-
based font design tools have yet been built s. This in turn has the consequence that
the community's attitude towards font design constitutes a self-fulfilling prophecy:
it is too tedious, because no tools have been built to mal{e it easier, because it is
too tedious.

s Picor is intended to be a type design system, not a font design system. The
outline description stage that Picor implements is followed by a bitmap editing
stage.

178

In this respect, the approach that the computer science community adopts to
the problem of producing fonts (and hence documents) of good technical qual-
ity is exactly opposite to the approach adopted by experienced type designers.
The designers' approach is exemplified by Hermann Zapf's remarks at the 1983
working seminar of the Association Typographique Internationale at Stanford:
'Today offset printing and electrostatic processes offer some new possibilities in
the transfer of letterforms to paper and may automatically require new design
solutions. Digitized alphabets therefore should be designed for the bitmap' (Zapf,
1985).

One has to say that the consequence of this difference in views is evident in the
appearance of documents produced by computer-based systems. To acknowledge
that such documents are much better than they used to be is not to say that they
are as good as they should be. The objective of workers in the field should be to
produce results with the new technology that are equivalent in quality to those
the old technology produced as a matter of course.

References

Carter, H. G.
Fournier on punchcutting: the text o] the Manuel Typographique
London: Soncino Press, 1930; New York: Burt Franklin, 1970

The optical scale in typefounding
Typography, no. 4, pp. 2-6 (1937)

Matthew Carter: Bell Centennial (Type and technology monograph no. 1)
New York: Cooper Union, 1982

de Vinne, T. L.
Plain printing types
New York: Century, 1900

DIN 16 518
Klassifikation der Schriften
Berlin: Deutschen Normenausschut3, 1964

Dreyfus, J.
Italic quartet
Cambridge: Cambridge University Press (privately printed), 1966

Dwiggins, W.A.
WAD to RR: a letter about designing type
Cambridge, Mass.: Harvard College Library, 1940

179

Knuth, D. E.
TEX and METAFONT: new directions in typesetting
Bedford, Mass.: Digital, t979

The Computer Modern family of typefaces
Stanford Computer Science Department report STAN-CS-80-780 (1980)

A Course on METRFONT Programming
TUGboat, vol. 5 no. 2, pp. 105-118 (1984)

Lessons learned from METAFONT
Visible Language, vol. 19 no. 1, pp. 35-53 (1985)

The METRFONTbook
Reading, Mass.: Addison-Wesley, 1986

Kohen, E.
An interactive method for middte resolution font design on personal
workstations
in Bucci, G., and Valle, G. (eds.), Computing 85: a broad perspective of
current developments. Amsterdam: North-Holland, 1985

Siegel, D.
The Euler project at Stanford
Stanford, Ca.: Stanford University Department of Computer Science, 1985

Southall, R.
Metafont and the problems of type design
in Andre, J., and Sallio, P. (eds.), Typographie et informatique: support du
cours INRIA, Rennes, 21-25 Janvier 1985. Rocquencourt: INRIA, 1985

Designing new typefaces with Metafont
Stanford Computer Science Department report STAN-CS-85-1074 (1985)

van Krimpen, J.
A letter to Philip Hofer on certain problems connected with the mechanical
cutting of punches
Cambridge, Mass.: Harvard College Library, 1972

Zapf, H.
Future tendencies in type design
Visible Language, vol. 19 no. 1, pp. 23-33 (1985)

"Verheit3ung u n d Versp rechen"

A T H I R D G E N E R A T I O N A P P R O A C H
TO T H E O L O G I C A L T Y P E S E T T I N G

Reinhard WONNEBERGER

Alttestamentliches Seminar
Universit~t Hamburg
2000 Hamburg, FRG

Abstract
The process of producing the monograph "Verheit~ung und Versprechen" is de-
scribed both in its relation to previous techniques and as an example for present
possibilities. We describe how to produce Greek and Hebrew by means of TEX ,
say a few words about Gothic and Fraktur, and discuss automatic translation
from SCRIPT into IbTEX. Indexing using SCRIPT is described and leads to a more
general discussion of the indexing problem and the r61e of symbols. Further topics
are operating considerations and 'manuscript support'.

1. T h r e e gene ra t ions of theological typesetting
When we received the first copies of our book "Verheiflung und Versprechen "1
from the publishers, a rather adventurous story of theological text processing and
typesetting was closed, part of which shall be discussed here. 2

To typeset books in theology, and especially books dealing with questions of
Biblical exegesis, one usually needs Greek and Hebrew. If medieval authors are
quoted in German, one should also like to have Gothic; and uppercase Fraktur
letters will be needed to deal with textual criticism. These parts of the text
often contain entries for the index, and other index problems are posed by the
conventional sequence of biblical books, which is by no means alphabetical.

In addition to quotations from accented languages like French and languages
with special characters, like Scandinavian ones, there are also a few peculiarities
in style, such as in-text lists 3 and the abundant use of footnotes to give source

R. W. / Hans Peter Hecht: Verheii~ung und Verspreehen. Eine theologische und spraehanalytisehe
Kl~rung. GSttingen: Vandenhoeek & Ruprecht 1986. xvi, 273 Seiten. ISBN 3-525-60367-3.

2 The work presented here was mainly done at DESY, Notkestr.85, D 2000 Hamburg 54, FRG, and I
should like to express my gratitude to this institution and its representatives who helped me in many ways.

3 Stream lists and related list types for I$TEX. TUGboat --- The TEX Users Group Newsletter. (Provi-
dence, Rhode Island, USA) 6 (1985/3) 156-57. Incidentally, Donald Knuth's description of the WEB system
starts wi~h such a list; see also examples in the later parts of this text.

181

information and side discussions that will often require indexing. 4 While these
problems remain unchanged, the solutions offered in electronic data processing
have changed a good deal in the last decade.

When my first monograph was published in 1979, 5 I still worked with my own
typeset t ing program SCRIPTOR, 6 writ ten in P L / 1 , which in its early days read
a text and a correction stream of punched cards, and then punched a new text
from them, all in uppercase letters, of course. Later on it was extended to handle
lowercase and even Greek, and the final output was done on a chain printer. When
it came to the final printout, the operator was somewhat puzzled by the request
to print twice on the same paper, once with a Latin, and once with a Greek chain.
While most features of this program are outdated now, its coding and decoding of
Greek is something still of interest, and we shall come back to it in our discussion
of Tbl. 2.

The next generation of theological typesett ing is represented by my manual on
textual criticism, 7 which was produced with SCRIPT Release 2. s The problems
posed by this book are basically of two kinds: actual typeset t ing and document
support. 9 Since it was going to appear in English as well as in German, one of the
document support problems was to keep the two versions consistent. Conditional
processing enabled us to create a single source, containing three layers of material:
German, English, and common text, e.g. the Latin symbols and sigla of textual
criticism and bibliographic references t h a t remain the same for both editions.
This policy also helped with the process of translation. Half a screen of German
text was duplicated as a template for English, and while overtyping this text with
the translation, the translator could still see the German original. The many
cross references between different parts of the book could not easily have been
handled manually, and producing the index was rather sophisticated. Expressions
from BHS were to be separated from normal keywords and entered differently for
upper and lower case first letter, while normal indexing should mix both cases.
Biblical books were to appear in their conventional sequence, and chapter and
verse numbers were to be sorted according to their numerical order.

As to the typesett ing problems, in addition to Greek and Fraktur, Hebrew

4 Experts wilt notice that footnote numbers stay within the height of the notes, while they don~t in
the text, and that they are preceded and followed by constant space instead of being placed left of some
tabbing position.

5 Syntax und Exegese. Eine generative Theorie der griechischen Syntax und ihr Beitrag zur Auslegung
des Neuen Testamentes, dargestellt an 2.Korinther 5,2f und RSrner 3,21-26. Beitr~ige zur Exegese und
Theologie 13. Frankfurt / Bern / Las Vegas: Lang 1979.

Scriptor. Ein Text-Editions-System. Heidelberg: Rechenzentrums der Universit~t. Skriptum 1976.

7 Understanding BIJS. A Manual for the Users of Biblia Hebraica Stuttgartensia. Subsidia Biblica 8.
Rome 1984..--- Leitfaden zur Biblia Hebraica Stuttgartensia. GS~tingen Vandenhoeck & Ruprecht 1984.

s International Business Machines Corporation (ed.) Document Composition Facility: User's Guide
Program Product (Program Number 5748-XX9 IBM Publication SH20-9161-1) 2nd edition April 1980.

9 'Document support' refers to automatic services like numbering headings, lists, notes, etc., providing
tables of content, figures, tables etc., cross referencing, indexing, conditional processing and the like.

182

was also required. These problems could only be mastered with the aid of two
programs by P. K. Schilling. CALLIGRA will produce vector fonts, in our case
the so-called Hershey fonts, on a matrix plotter, and EDITF helps with drawing
new fonts, like Hebrew. 1° It should be noted for the discussion to come, that
the reverting algorithm for Hebrew was built into CALLIGRA, so that the only
task left to SCRIPT was to mark the Hebrew parts of text for later inspection by
CALLIGRA.

When T ~ 11 became available at DESY in 1984, t2 its outstanding typeset t ing
qualities were tempting, and there was also a fascinating algorithmic approach
to some of the problems well known to anybody dealing with text processing. 13
On the other hand, there was not much document support, and all the special
features that we had developed for theological typeset t ing were not available.
This situation improved with the appearance of ISTEX, 14 which contains features
similar to GML, the G[eneral] M[arkup] L[anguage] implemented in SCRIPT. 15

At that t ime my friend, Hans Peter Hecht, and I had done a lot of work exploring
the links between Speech-Act-Theory and theology, when preparing the book we
later called "Verheif~ung und Versprechen", a book that we wanted to be both
scientific and attractive, in short a true pleasure to read. So it was quite tempting
to express this intention through fine typesetting.

When Temptation approached us in the disguise of ~ X , we had already worked
hard to put our manuscripts into the computer. Though some of our students
helped us in typing, a lot of editing was needed to achieve an acceptable ma-
nuscript. I suppose that this decision cost us a lot of t ime instead of saving it,
but, on the other hand, I am convinced that the book would otherwise never have
surpassed the state of informal papers. Considering that the book was changed up
to the very last moment, before the camera ready copies came off the laser plotter,
the decisive gain seems to have been bet ter control over the text. Sometimes, the
author is also inspired to develop new features bo th in style and content. So
we used the possibility of floating material to bring independent examples, like a
scattered florilegium.

10 Details are discussed in my contribution: L'ex6g~se biblique et t'ordinateur. Acres du Congrbs
international informatique et sciences humaines. Libge 18-19-20-21 novembre 1981. (Louis Delatte, ed.).
Li&ge: Laboratoire d'Analyse Statistique des Langes Anciennes (1983).

11 Donald E. Knuth: The TeXbook. Reading, Massachusetts / Menlo Park, California / London /
Amsterdam / Don Mills, Ontario / Sydney: Addison-Wesley. 1984.

12 A survey of the first books printed with TEX is given in: Donald E. Knuth: TeX Incunabula.
TUGboat 5 (1984/1) 4-11.

13 See the interview: G. Michael Vose / Gregg Williams (eds.): Computer Science Considerations.
Donald Knuth speaks on his involvement with digital typography. Byte 11 (1986/2) 169-172.

14 Rf. Leslie Lamport: LaTeX. A Document Preparation System. Reading, Massachusetts / ... /
Amsterdam / Don Mills~ Ontario / Sydney / ...: Addison-Wesley. 1985.

is See Charles F. Goldfarb: A generalized approach to Document Markup. Albert Endres / Jiirgen
Reetz (eds.): Textverarbeitung und Biirosysteme. lBM-lnformatik-Symposion 1981, Ba4 Neuenahr. Fach-
berichte und Referate 13. Miinchen / Wien: Oldenbourg 1982. P.153-162.

183

To quote Oscar Wilde: "I can resist everything except temptat ion" , and so we
decided to move our manuscript from a perfectly working and trustworthy system
to an incomplete system full of "dangerous bends". The first step was to write an
automatic translation from SCRIPT into I$TEX. For obvious reasons, this had to
be done in SCRIPT, and so it need not concern us here. Generally, a manuscript
can be run without errors after translation, and manual changes are only required
to incorporate new features. In the following sections we shall discuss the main
components that were built to fulfil our requirements for theological typesett ing
in TEX and LATEX.

2. P o o r M a n ' s Greek

To typeset Greek text, one needs Greek characters, a mapping to keys, and ac-
centuation. The obvious way to produce Greek would be to have special Greek
fonts. As long as no such fonts are generally available, acceptable results carl be
produced by simulating them in some way by the existing Greek mathematical
symbols.

The problems of mapping, however, are of a more general nature. 16 While the
mapping relation of Greek characters to Latin keys is obvious in most cases, at
least some letters call for a coding convention. The coding of accents is even
more difficult, since the second dimension introduced by accents can be handled
in different ways.

Since the Greek characters contained in standard TEX are intended for, and
used in math mode, it is possible to introduce abbreviations in the following way:

\ m a t h c o d e ' a = \ a l p h a

and then typeset Greek as math. But interword spacing is ignored, and so this
would not be a particularly good way to solve the problem.

A new font may also be defined using an existing one. The following code first
gives a new name to an existing math italic font, then repeats the \ f o n t d i m e n l . . 7
parameters for that fontname.

\ f o n t k g r f t = a m m i l 0
\ f o n t d i m e n 2 \ g r f t = 3 . 5 8 p t
\ f o n t d i m e n 4 \ g r f t = l . l l p t
\ f o n t d i m e n 6 \ g r f t = 1 0 . 0 p t

\ f o n t d i m e n l \ g r f t = 0 . 2 5 p t
\ f o n t d i m e n 3 \ g r f t = l . 6 7 p t
\ f o n t d i m e n 5 \ g r f t = 4 . 3 1 p t
\ f o n t d i m e n T \ g r f t = l . l l p t

Since this method inherits some of the problems of math mode, and also would
require different definitions for different font sizes, it was not pursued any further.

Our approach is to typset each character as a piece of math on its own. Though
this method may increase the overhead costs, it is most flexible regarding all other

16 See Leclercq A. A.: A Note on the Transliteration of New Testament Greek. New Testament Studies
19 (1972/73) 18%90. Transliteration for several languges is'discussed in J. Longton: Codage des ~critures
non-latines. Paper read at the conference "Informatique et Bible", Louvain La-Neuve, Aofit 1985, see also
note 42. For Hebrew see note 19.

184

aspects. For the t ime being, we can only use those Greek letters that are available
as math characters in TEX and also as math mode control sequences provided by
P L A I N . 17

In the math character set, the normal forms e~p¢ are replaced by the variant
forms e ~ , whereas ~r is preferred to its variant form w. In the case of sigma,

should be considered as an additional letter, since it is used instead of a at the
end of a word. Iota subscriptum is nothing but a smaller ~. From a typeset t ing
point of view, it behaves like an accent, but from a semantic point of view, it
is a letter, and it becomes a normal iota called iota adscriptum, if its vowel is
capitalized.

Although lowercase Greek letters in italics might be combined with uppercase
straight letters, we preferred italics. They are taken from the mi t font. A switch
to italic is done to affect those characters t h a t are not defined separately, like
omikron and the uppercase letters ABEZHIKMNOPTX shared with Latin.

While accents are prefixes in TEX , they are suffixes in our scheme in order to be
compatible with our existing texts, which are based on the concept of zero-width-
characters. 'Zero width' means that these characters are simply overlaid over the
previous character without any adjustment (rf. note 8 and note 10). For Hebrew,
this requires that letters are shaped in such a way that punctuation will remain
visible.

To implement accents coming after their letter, one might take advantage of
the fact that accents can only occur in connection with vowels. So vowels might
be made active to let them inspect what follows. An example of this technique
is the activation of \p r ime in PLAIN ('The TEXbook' , p. 357). Unfortunately
this would mean to look ahead in vain in the more frequent cases of unaccented
vowels and also would involve complicated tests inside the macros. So we decided
to accentuate characters afterwarda In principle, the TEX philosophy to precede
a character with its accent seems to be superior, because an accent might change
the width of the accented character. Thus, for Greek words starting with a single
uppercase vowel, the accents have to be placed in front of the letter, i.e. to its
left side.

The TEX method of accenting, using an \ a c c e n t primitive as a prefix to t he
letter to be accented, would only work with the existing accent characters and
therefore not cover all possibilities. So we had no choice but to simulate accenting
by explicit graphic movements. From a graphic point of view, this task is made
difficult in two respects: first, vowels differ in width, second, the bending of italic
letters would require some trigonometric calculations, a problem we solved by
ignoring it. To obtain at least some symmetry, however, we made the vowels pass
their width to an accent macro that might follow.

Accents like acutus or gravis are already provided by TEX. The spirit~ts are, in
some common fonts, represented as right and left quotes (' ') for lenis and asper,

17 Rf. note 11 p.154f, p.434. A digamma, which might be useful for the purposes of etymology, and a
varkappa are contained in the MSYx fonts published by Barbara Beeton in TUGboat 6 (1985/3) 124-128.

185

in some others as semi-circles, the latter of which we preferred. To achieve this
shape, we used the \ r h o o k and \ l h o o k (' ,) normally used only in compound
math symbols. Smaller spirit~ts are needed to place a circumflexus above them. 18

In general, the accents are produced from normal math or math italic characters,
which are taken from a smaller fontsize and which are raised or lowered according
to need. They are overlaid on the preceding character by means of the \ 1 l a p
macro. The corresponding macro takes into account the width passed to it by the
preceding vowel.

Most Greek characters are related to their Latin counterparts in an obvious
way. The remaining codes were chosen also for reasons of compatibil ty with our
earlier texts. Since sigma f inal is was coded as the '~' (cent) character from the
EBCDIC character set before, it had to be changed to some ASCII charactery 'v'
in this case.

a b g d e z h q i j k l m n c o p r s v t y f x u w
c~13 "7 6 e q rl O ~ ~)~ # v ~ o Tr ~ a ; r v ~ x C w

A B G D E Z H Q I K L M N C O P R S T Y F X U W
A B F A E Z H (9 I K A M N H O H P S T T ~ X ~ I 2

Table 1: Codes for Greek Characters.

Keyboard characters now represent the Greek alphabet as shown in Tbl. 1.
It turns out that the whole Latin a lphabet and figures are used up, with the
exception of 'V' and 'J ' , since sigma f inal is and iota subscriptum do not exist in
uppercase. This fact can be used to build macro names which are to be used
inside Greek text.

\let\VVVWWVV=\underline ~ underlining

This example was used to underline certain keywords in Greek quotations, since
emphasis cannot be achieved by switching from Greek italic to Greek roman,
because the latter is not yet available.

A slightly different problem is posed by the coding of accents. In the program
mentioned in note 6, I tried to minimize the keystrokes for accents. Every word
is prefixed there with a figure that indicates its accent class according to Greek
grammar. The correspondence is shown in Tbl. 2. A zero for unaccented words is
required to make sure that no word has slipped classification. The program will
than analyse the words into syllables and determine which combination of accents
and 8pirifftsis to be used and where it is to be placed.

Though this method is rather elegant, it requires knowledge of grammar and
increases the overhead costs, because accenting has to be computed over and over
again. So both in SCRIPT and TEX , we coded accents as figures as shown in Tbl. 3

18 These combina t ions will be higher t h a n normal letters, but will no t cause problems in normal text .
To avoid problems as in Tbt. 3, a \ s t r u t could be used, cf. also Ba rba ra N. Beeton: How to build a
\ s t r u t . T U G b o a t 4 (1983/1) 35-36.

186

Syl lable Class Code Greek
..... :1 & 1 0 atonon 0ge 7¢
-i 1 oxytonon lde ~
-2 2 paroxytonon 2eiper ~C~r¢~
-3 3 proparoxytonon 3anqrwpov ~u~gwro~
-1 4 perispomenon 4brontaj /3~Ot, r&
-2 5 properispomenon 5bhma j3~pa
:3 , -1 6 proparoxytonon 6anqrwp'ov 0tiv t ~ u ~ T r b q r~q
-2 7 properispomenon 7bhma 0ti fl~/~d r~
-1 8 oxytonon 8tiv r/,¢

1 9 aspiration 9wv ~b¢

Table 2: Codes for Accent Classes.

and placed them where they belong. A slight disadvantage is the interruption of
the typing flow.

spiritus II at-onon I acutus I circumflexus I gravis I

none a 1 d 2 & 3
lenis > & 4 ~ 5 d~ 6
asper < ~ 7 ~ 8 c~ 9

Table 3: Codes for Greek Accents.

Mapping Latin keys to Greek characters is normally done by a construction of
the form:

{ \ c a t c o d e ' x=13 \gde : fx{$\a lpha$}}

Character 'x' is made active (catcode=13) and then defined to a new meaning.
This definition must be global to transcend the group it is contained in. This
group will reset automatically the activation of 'x' when left. It should also be
noted tha t this construction can be used only on input level, because characters
once read cannot change their category code any more. There is, however~ a
way to circumvent this problem if certain restrictions are met, as we shall see in
connection with the index problem. To use the character with its new meaning,
it is sufficient to make it active again.

Unfortunately our construction would not work for %' instead of 'x', because
this letter also occurs in the definition and will be active at the t ime it is read.
To solve this problem, we use intermediate names for our Greek characters. A
safe 'building convention for these names is to use the active character in folded
and doubled form. So alpha will become ,aA.

We have also to consider the similar problem that characters contained in the
names \ c a t c o d e or \ g d e f will also have to be made active. For them We may use
different names that definitely will not contain active characters. With these two
modifications, our construction will look like this:

187

\let\@@=\cat code
\let\O@@=\gdef
{\@@' a=13 \@@@a{\@AA}}
{\@@'b=13 \@@@b{\@BB}}

{\@@'A=13 \@@@A{\@aa}}

Our next step is to define these intermediate names for every Greek character
in the well known way:

•.. \def

\@BB{$kbeta$}\def
o . .

The funny line breaking helps to avoid unwanted blanks. Lower case vowels are
put into a box, the width of which is kept for later use by possible following
accents, and then they are unboxed again:

\def\deftgreek{\def\vdef##1##2{\def##1{\setbox
\@t empboxg=\hbox{##2}\@t empdimg=\wd\@t empboxg
\unhbox\@t empboxg}}\vdef

\@AA{α}\def

To do this, a \vdef (define vowel) macro is defined, and this definition and its
repeated execution are combined in a \ d e f t g r e e k (define text Greek) macro
together with definitions for the conconants and the accents. As the meaning of
active characters will be different for other languages like Hebrew that might be
used in the same text, we have to confine this meaning to the scope of the groups
containing Greek text. So this macro will allow Greek to start anew every time
it is needed.

Greek text will look like normal fontswitching. A left brace is followed by the
\g reek macro, which does the switching, then by the text itself, followed by a
right brace. A previous loading of the corresponding macros is required. To give
an example, the Greek text VII: 2.Ko 9,5

NTG &uayicc~ov o~u ~'Trlad#~v Ira~a~aA~aa~ roi~q &6eA~oo~, ~va
?r@O~A~O.)O'LV e~t; ~]t&; EOL~ 7r@O~aTOL@T[.O'WGLtP TOt; n~oeTr~?,TyeA~g-
wlv edAo'Tiau 6t,~v TOL6T~V, ~roi~L~V e~VO~t, OV'TOJq ~J~ edAo'/iav
~oA t~i7 dJ¢ rcAeove~av.

from our book (note 1, p. 162) will be produced by the following input:

\begin{descript ion}
\item[{NTG}] {\greek
a>nagkai2on oy5n h<ghsalmhn parakalelsai toy3v a>delfoylv.
i7na proellqwsin ei>v y<ma2v kai3 prokatartilswsin thSn

188

\VWgVvvwrg{X
pro\-ep\-hg\-gel\-mel-}
\VWOn~VW{X
nhn}
ey>logilan y<mw2n taylthn,
e<toiln~ e±Snai oy7twv w>v ey>logilan
kai3 mh3 w<v pleonecilan.}
\end{description}

Explicit hyphenation will work, but not in connection with underlining, where we
had to do hyphenation explicitely.

Like this, Greek will be rather similar to normal font-switching, and the text
will not be read as a pa rame te r , so t h a t there are no restr ic t ions of length. It

should be r emembered , t h a t no rma l macros can only be used inside Greek text

af ter their names have been redefined, as was explained earlier.

3. R e v e r t e d H e b r e w

Types e t t i ng Hebrew, like Greek, also needs a mapp ing of characters . 19 Accen-

tua t ion , however, is much more compl ica ted , since vowels are handled as a sort

of accent called punctuation, and, in addi t ion to them, there is ano the r layer of

accents in the i r p rope r sense called cantilation, which give a sort of segmenta t ion

and hints for s inging the tex t aloud.

First , there was the quest ion of Hebrew charac te r s . Only a few of t hem are

available because they are used for m a t h e m a t i c a l purposes. 2° An example let ter

using a comple te font as far as consonants are concerned was publ ished by Lynne
A. Price in T U G b o a t 2 (1981/1) 122-123. 21 By chance we had available a similar

Hebrew font, bu t only in two sizes. 22

The real p rob lem with Hebrew is its different running direct ion, f rom right to

left, shared wi th o the r semit ic scripts. 2a When Hebrew is to be mixed with some

language using the Lat in a lphabe t , this p rob lem is fur ther compl ica ted , since

opposi te runn ing direct ions have to be combined dynamica l ly into lines.

The pr in te r ' s rules for t ypese t t i ng mixed tex ts are quite simple to s tate , if we

dist inguish between the forward direct ion of a text , being its running direct ion in

19 See Wolfgang Richter: Transliteration und Transkription. Objekt- und metasprachliche Metazei-
chensysteme zur Wiedergabe hebr~iischer Texte. ATSAT 19. Miinchen 1983; rf. als0 note 16.

2o While aleph (R) is standard, bet, gimel, and dalet, are contained in the MSYx fonts published by
Barbara Beeton in TUGboat 6 (1985/3) 124-128.

21 Since no automatic reversion was done~ the input had to be entered in reverse order depending on
how much would fit on the output line. There was also no explanation of the fact that the baseline of the
Hebrew font was different from the normal baseline.

22 It might be interesting to compare the size of these fonts, which also depends on the output device,
with a standard: in BHS, Hebrew in the main text has a height of 3mm, and in the apparatus 2mm.

2a See Pierre A. MacKay: Typesetting Problem Scripts. Computer typesetting provides a solution for
Arabic and other scripts. Byte 11 (1986/2) 201-218. Cf. also his earlier project description in TUGboat 4
(198i/2) p. 76.

189

time, on the one hand, and its graphic representation, being ltr (left to right) or
rtl (right to left), on the other hand:

Take as much Hebrew text in forward direction as will fit on the line
and revert it relative to this line.

If this is done on the computer, it requires the Hebrew text to be coded forward in
the normal ltr direction of the environment and reverted later on in the program.
Here we have to cope with a design problem of text processing systems, because
normally you cannot change output lines after they have been broken by the
processing system. For SCRIPT, we were lucky enough to have a plot-driver
writ ten by P. K. Schilling in P L / 1 (see note 10) that could be modified ra ther
easily. Though the algorithm is quite simple in principle, one has to find a way
to mark the Hebrew parts uniquely and to deal with such cases that start in one
line and end in another. Another problem is posed by delimiting blanks.

Since the problem of reversion was mentioned both in 'The TEXbook' and in
an early 'Dreamboat ' article (TUGboat 2,2 p. 58.), one may safely assume that
there is no obvious solution in TEX. 24 Though this is a good approach in practice,
it is inappropriate in principle because reversion should already be present in the
dvi file. It also requires rewriting the output driver for the dvi-Fite, which was
impossible in our case as we had no access to the source code. So we had to
look for a solution that could use the normal instruments of TEX, without either
modifying TEX or the output driver.

The list macros given in Appendix D of 'The TEXbook' provide a guide for
writing the actual reversion macros. Unlike Greek, the text to be reverted will
be read in as a parameter and scanned by these macros character by character.
Input characters, however, cannot remain what they are. They should print as
Hebrew letters, some of which might be associated with diifer~nt positions in the
font table. The problem now is to get hold of these characters. This problem is
due to the fact that; the inspection macros use \ f u t u r e l e t , a macro built on the
\ l e t philosophy, which allows us to make comparisons, but no redefining or the
like.

To bypass this problem, we used a trick which might be rated "very dirty": the
\meaning \ n e x t control sequence will produce " the l e t t e r a", if \ n e x t was
\ l e t to "a". So we can construct a macro \ s t r i p inspired by a similar one
from 'The TEXbook' (p. 382), that will just strip off the describing words " the
l e t t e r " :

\ d e f \ s t r i p #1 #2 {} Y, remove t e x t ' t h e l e t t e r ' .

The first parameter will swallow the word ' t he ' and the second parameter the
word ' l e t t e r ' . The character we want is then left over, and we can use the
following code to make it the definition of \ t h i s c h a r :

24 Pierre MacKay at first studied the possibilies of changing TEX itself, but now prefers a solution
similar to our CALLIGRA approach, i.e. doing reversion in the output driver (rf. note 23).

190

\edef \thischar {\expandafter \strip \meaning \next}.

With macros like this, I prefer to 'believe' in them than to try and explain them. 2s

t y r q ? 4 P p (s N n M m l K k j v x z w h d g b)

Table 4: Arbitrary codes for Hebrew Characters.

However this technique requires that we are sure to have only such material in
our revert-parameter, which will produce just the type of two-word descriptions
that our strip macro can handle. For example, this would not be the case for
macros. Much could be gained therefore if someone could write a more sophisti-
cated \strip macro that could handle different types of input.

To produce Tbl. 4, we used a \ r e v e r t (. . . } macro acting like a \ h e b r e w (. . . }
macro, but leaving input characters untouched. Character mapping is ad hoc and
should be replaced as soon as a convincing standard is available.In our Hebrew
texts we actually used '%' instead of '4' and '$' instead of 'y', but this will only
work if the \ h e b r e w (. . . } macro does not become part of a parameter of another
macro.

To produce the Hebrew part of the text h Nu 30,7in our book (note 1, p. 150):

BHS ,~'n~ ~t~.~ ~,~'b~ ,~-,',~ ~;'sb ~',~ ~-~:~

:,'~.~-~ ~'~D~ ~

V Si maritum habuerit et voverit aliquid et semel de ore eius verbum
egrediens animam eius obligaverit iuramento.

1545 Hat sie abet einen Man, vnd hat ein gelt~bd auff jr. oder entferet jr aus
jren lippen ein verbbndnis ~ber jre Seele

the following input was used:

\item [{BHS}] \hebre~
{w')iM-h+jwo tih'j'h l ') i j $
w!n 'd+r ' j h+ (+ l ' j [h)wo mib'v+) v ' p ! + t ' j h + }
\par\noindent\hebrew
{)H$'r)÷s'r+h (al-nap'$+Sh!E}

There is no problem with reversion as long as line breaking is explicitly con-
trolled. It will be interesting to learn from the wizards whether some sort of
semi-automatic linebreaking might be implemented that allows reversion to be
confined to one line at a time.

2s Unfortunately there is no WEB-like system for the production of ~ X macros.

191

4. G o t h i c a n d F r a k t u r

Before we finish our discussion of different scripts, we should mention in passing
our applications for Gothic and Fraktur.

In general, the Gothic script corresponds to Gothic architecture: 2s

Die B u c h s t a b e n der Got ik s ind hSher als brei t . Sie lassen sich in ein hohes schmales
Rechteck e inordnen u n d s t ehen eng bee inander . Alle B u c h s t a b e n s t e h e n mi t wenigen
A u s n a h m e n auf der Grundl in ie . Die Ober - und Unte r l~ngen erscheinen verkfirzt .

Das untere Ende des Schaftes ist angebrochen und dutch kurze Verbindungsstriche
an den n£chsten Buchstaben herangezogen.

One of its highlights is reached in the 42-line Bible of Johannes Gutenberg (1397-
1468). It should be noted in passing that the outstanding quality of his work is also
due to the letter variants with different widths, a technique that , in connectiton
with TEX , is considered for Arabic (rf. note 23 p. 217).

In our book, Gothic is used to quote from medieval authors like Martin Luther,
and we alreaAy saw an example from his translation of 1545 above. Typeset t ing
of Gothic will help a lot when German and Latirr are mixed in a text. From a
typesett ing point of view, some peculiarities are involved, e.g. a long and a short
form of the letter 's', ligatures like 'tz', or the umlaut 'e' wri t ten as a small letter
in the position of an accent. Since we had no Gothic font available, I tried to
simulate some of these effects with the \ s f font. 27

Fraktur (literally: 'broken script') is a collective term for forms of script in the
Gothic tradition, coming from the end of the Gothic period, from the Renaissance ,
Baroque, classicism and Biedermeier. In developing a rich choice of forms, it
corresponds particularly to the architecture of Baroque (rf. note 26 p. 144-147).

Fraktur capitals are often used in text~ual criticism to denote some of the main
sources, for example in "Biblia Hebraica Stuttgartensia" (rf. note 7).

5. I n d e x i n g

While reading a book only gives 'sequential access', an index will give 'direct
access' to its contents. One of the main purposes of indexes is therefore to help
with not reading a book. 2s While everbody can work with an index, it is by no
means trivial to give a general definition of what an index is like. Neither T f ~

26 See also the examples in Sepp Jakob/ / (P .) Donatus M. Leicher: Schrift + Symbol in Stein, Holz und
Metall. Miinchen: Callwey 1977. p. 134-143, the quotation is on p. 134. Interesting aspects of typography
may be gained from this book, since it presents scripts from a mason's point of view.

27 It is standard in ISTEX , but is not simply a different style, but a completly different script, which
also is available in 'slanted' and 'bold' and should not be mixed with computer modern fonts for aesthetic
reasons. We used slanted sans-serif for the motto texts and straight sans-serif for their authors (cf. also the
mottos of 'The TEXbook'). Both for ~esthetic and handling considerations, it would seem more appropriate
to have a concept tha t allows to switch between several base scripts, giving the full range of script styles
for each of them.

z8 Cf. also G. Knorz / G. Putze: Te~tverarbeitung zur Vorbereitung und Durchfiihrung einer au-
tomatischen Indexierung. Peter R. Wossidlo (ed.): Textverarbeitung und Informatik. Fachtagung der
Gesellschaft ffir Informatik 1980. Informatik Fachberichte 30. Berlin: Springer 1980. P. 139-163

192

.* index e n t r i e s
:s p = ' l ' . z A J e s

T h e ' : s ' i s my GML-tag

nor LATEX provide automatic indexing, but allow collection of index material in
a file. 29 It is then up to the user to write his own sorting program or to use one
from others. S°

To produce an index as in the 'Leitfaden' (note 7) requires a lot of programming
effort. So it seemed wise to rely on what had already been developed. Index
handling in SCRIPT was also required since the automatic search of items for
the bibliography is basdd on output coming from the author part of the index. $1
Normally the index has to be run with two purposes, one to give the requests for
the bibliography, and the other to produce TEX input for typesetting the index.

The \ index macro that I wrote will produce input for SCRIPT. In the following
code

\ix z [Jes 65,17 A-C]{Jes 65,17}

the first parameter z denotes a biblical quotation. The text in brackets is an
optional parameter according to I$TEX conventions; it is used to specify an aiter-
native form of the index term that is to be used in the text, but is also typeset
in the predefined style for index terms. If empty, the parameter in curly brackets
will appear only in the index.

If our example is the first index entry, it will cause a comment card containing
'come-from' information to be written to the file \ jobname.idx. 32 Then it will
produce the index entry in SCRIPT format:

for TEXOL of August 20, 1985 at 1156

65,17

for indexing, ' p ' - ' l " is a keyword parameter giving the
location, here page 1, 'z' denotes biblical quotations as before. The 'A' means to
regard all the rest of the line as index entry, whereas in my SCRIPT texts normally
the number of words for this entry is given.

Although this approach gives acceptable results and might be further improved,
it seems important to look for a more algorithmic description of the problem
that may lead to solutions which will conform to the high standards of problem
description reached in TEX itself. The following considerations are only a first
step to pin down some of our experience with indexing. Let us start with a few
informal definitions.

29 Rfi 'The TEXbook' , p.423-425, cf. als0 the index macros of Max Diaz' F~cil TEX (TUGboat 2
(19s~/2) A-2s.

s0 Terry Winograd / Bill Paxton: An Indexing Facility for TeX. TUGboat 1 (1980/1) Al-12. Sorting
is done here with INTERLISP programs. According to the index in TUGboat 4 (1983/2) p.79-80, no other
sorting programs have been published.

al Though collect volumes, which get a separate entry, are not necessarily in the index, they are also
found in the first pass, because they contain information on the parts of them contained elsewhere in the
bibliography, and will search the list of requests coming from the index for a match.

s2 This concept is par t of manuscript support, a topic we shall come back to further on.

193

1. A Main Index, or 'Register ' is a set of indexes representing different sets of
index terms or different principles of order.

2. An Index is an ordered list of main index entries.

3. A main index entry is a hierarchy of one index entry and its subentries.

4. An index entry consists of one index term and an aggregated list of index
addresses.

5. An index address can be a logical or physical location or a reference.

An index term will belong to a certain class, e.g. 'biblical reference' or 'cited
author ' , or 'subject ' . Every class will be associated with a certain principle of
order. Biblical references have to be ordered according to their canonical sequence,
while subjects are ordered according to the alphabet. Different classes with 1Lhe
same ordering may as well appear in one index as in different ones. Individual
index terms can also be classified according to different degrees of importance
or different kinds of use, and associated with different typeset t ing styles, as in
'The TEXbook'. So it can be desirable to know whether a biblical text was just
mentioned or was commented upon. In some cases it may be necessary to ignore
certain elements in the sorting process; so control sequences should be sorted
according to their names and not be collected under 'V (backslash). A reference
can be exclusive, saying 'see ...', or additional, saying 'see also ...'.

A physical location is normally a page number. It can also be a file name.
A logical location may be the number of a heading or a figure or the like. aa A
reference will refer the reader to a different index term. In the index of the
Leitfaden, we also used footnote numbers to give a more precise access to the
information. 34

Producing an index will involve the following steps: 1. index term mark-up;
2. collection of index term and index address pairs; 3. sorting index terms; 4. ag-
gregating index terms and index addresses; 5. typesett ing. Aggregation of index
addresses will normally be done according to their natural (collecting) sequence.
In SCRIPT, the ' o r d e r ' parameter of the ' . p i ' control word will place the address
in front of the others, and the ' s t a r t ' and 'end' parameters will form an address
range. Sorting can be influenced by explicit sorting keys, and we used them heav-
ily. tn order to achieve the canonical sequence of Biblical books, our index macro
has to prefix every single quotation term with its sequence number. To improve
efficiency, one should be able to influence sorting after aggregation.

Typesett ing the index can also be rather complicated. ~ We wrote macros that
would cause SCRIPT to produce TEX input instead of printing the index. These

as Some historical and theoretical aspects of the logical and physical arrangement of texts are discussed
in my paper: Normattext und Normalsynopse. Zeitschrift fiir Sprachwissenschaft 3 (1984) 201-233.

34 The failure to use also §-numbers as announced on p.t17 was detected too late to be corrected.

35 See the example of Mathematical Reviews, which is described in 'The TEXbook' in the appendix
"Dirty Tricks" p. 392-394.

194

macros are fairly general. So they will put a symbol between an index entry term
and its address list. In TEX , this symbol can be used to produce blank space, a
colon, of even leaders. We chose the latter to separate page numbers very clearly
from the chapter and verse numbers of biblical quotations, and also to improve
the formal quality of the index.

It should be noted tha t an index, at least with larger manuscripts, will help a
lot during the development phase. In this case it is desirable to use as addresses
the names of the files in which the source t ex t is kept. One also should like to see
which terms have been chosen for indexing. This can be done with different fonts
or with \ma rg inpa r (rf. note 11 p. 423).

Normally an index te rm will be the same as a piece of text , so that it will be
convenient to produce both text and index entry by one macro, as it is done in
the format used to produce 'The TEXbook'. For German and other inflecting
languages, there will often be a slight morphological difference between the two
forms. The expression 'im Alten Testament ' should be indexed as 'Altes Testa-
ment ' or even as 'Testament, Altes'.

6. O n S y m b o l s

An additional problem is posed by non-standard characters contained in index
terms. If an index term contains symbols, they should not be expanded on the
• idx-file, since the task of sorting expressions like ' z (\ a c c e n t nn e}ro ' will not
be considered a favourite occupation by programmers. Avoiding expansion is not
trivial, as symbols occur at random inside the terms. What efforts are necessary
to avoid expansion can be learned from the I3TEX \ i n d e x macro. Basically,
the escape character is to be recatcoded from 0 to 12 (other), before the term
is read from the file. Therefore such macros must not be inside the arguments
of other macros. Since the IATEX \ f o o t n o t e macro reads the footnote text as a
parameter, \ i n d e x macros do not work correctly inside footnotes. Even worse is a
\ v e r b macro inside a footnote. This restriction is not imposed by the \ f o o t n o t e
macros from 'The TEXbook', App. B, and so we re-introduced the PLAIN footnote
philosophy into I3TEX.

The problem is due to the fact that characters once read in from the input
file can no longer change their category code. It might be worth discussion if
such a restriction is acceptable. In SCRIPT, three different methods to translate
characters are provided by the ' . t i ' (translate input.), ' . t s ' (translate string) and
' . t r ' (translate output) control words.

Our problem can, at least, be partially solved, provided we use delimited sym-
bols only. TEX allows symbols, or \ c s -names , to be either delimited by their
context or to be declared with explicit delimiters. The period used in S C R I P T as

a delimiter seems to be a good choice, as it does not disturb the appearance of the
source text too much. So we shall say e.g. \ de f \TeX. (. . .) , or \ d e f \ o . (. . . } for
the German Umlaut. Afterwards we have to use only the delimited form. As such
delimiters can also be used to delimit parameters of macros, we can use a little

195

trick to solve our problem: 1. the escape character of TEX , normally backslash, is
set active and mapped to a macro \backs l in the following way { \ ca t code ' \ t --0
\ c a t c o d e ' \ \ = 1 3 Igdef \{Ibacks l}}; 2. backslash is activated while the argu-
ment of the index macro is read; 3. the argument is stored in a token register,
which is done in unexpanded form; 4. while the token register is used to write
the index file, the \ backs l macro is defined to the desired character, e.g. to \ e s -
capechar; 5. while the token register is used to make text, the \ backs l macro
is defined in the following way: \def \backs l#1 .{ \csname#1\endcsname.} ; the
name is scanned up to the delimiter and then used as a control sequence; so the
initial symbol is re-established.

Though such manipulations are possible with this specific type of control se-
quence, which we call 'symbol' for convenience, they seem to be hardly acceptable
in view of the general importance of symbols for almost all languages besides En-
glish and Latin. 36 To overcome shortcomings of TEX concerning the use of several
languages, 37 it seems necessary to further investigate the complex nature of sym-
bols, both in practice and on a theoretical level, as will become clear from the
following remarks on their rSle in hyphenation, 3s and sorting.

Unfortunately the hyphenation algorithm cannot handle accentuation reason-
ab ly . Accents in a word will not only inhibit hyphenation, but also make it im-
possible to add such words to the hyphenation dictionnary. A ligature approach
on the other hand would require a new hyphenation dictionnary. Assuming that
accented words normally will hyphenate like their unaccented counterparts, one
should like to have a hyphenation algorithm that can simply ignore accents. The
few errors that might be caused by this approach could then be corrected by
explicit hyphenation.

As we learned from the index problem, it will often be better to handle special
and accented characters as symbols. In TEX , accented characters are produced
dynamically by overlaying normal characters with accents. There are two ways to
accomplish that: 1) using special control sequences like in PLAIN or some other
macro package; 2) defining active characters. 3) using ligatures. In case (1),
these macros will precede the accented character and are somewhat clumsy' to
type. In case (2), easy typing is paid for by restrictions in the variety of accents
that. can be handled this way. There is also a static way to produce accented
characters, which is based on the concept of ligatures. In this case, special fonts
are needed, and ligature analysis will increase overhead costs (rf. note 23 p.214).

36 The very simplicity of English seems to have a spoiling influence, cf. Pierre MacKay (rf. note 23
p.201): The complications of typesetting non-Latin scripts offer a challenge to the typesetter who has been
spoiled by the English language.

37 Michael J. Ferguson: A Multilingual T~X. TUGboat 6 (1985/2) 57-58.

as Bernd Schulze: German hyphenation and Umlauts in TEX. TUGboat 5 (1984) 103-104; Jacques
D~sarm@nien: How to run TeX in a French environment. Hyphenation, fonts, typography. TUGboat 5
(1984) 91-102; G. Canzii / F. Genolini / D. Lucarella: Hyphenation of Italian words. TUGboat 5 (1984/1)
14-15.

196

To keep source texts independent of such technical problems, special characters
should be coded as macros following these specifications: a. unique: all characters
should be possible at the same time; b. semantic: the meaning and not the face is
to be coded, e.g. Umlaut vs. diaeresis, or right quote vs. apostrophy; c. context
free: looking for these characters in the source should give a unique result.

While much has been done to make programs perfect in typesetting, these
programs do not normally properly reflect other properties of symbols. Even
plain characters are complex symbols that have a printing quality, but also have
other qualities more difficult to describe. One of them is their sorting quality.
The collating sequence of the Latin alphabet is traditional, while the sequence of
the special characters is somewhat arbitrary and needs additional conventions.

As we have already seen, the distinction between upper and lower case is essen-
tial for making indexes. In English keyword indexes, both should be considered
the same, but a distinction should be made in an index of special terms. 39

The distinction between upper and lower case is also necessary sometimes in
German. So the verb versprechen (to promise) will become a homograph to the
noun Versprechen (the promise) when occuring at the head of the sentence. To
cover this problem, a third case should be introduced, which might be called
raised. A lower case letter will have the type raised, if it is to print as uppercase
for reasons of context (e.g. at the head of a sentence) or style (e.g. in running
headings). This problem also occurs when main words are capitalized in English
book titles.

7. O p e r a t i n g

To make operating ~ X and its dialects safe and easy in an MVS environment, a lot
of support is needed. While becoming acquainted with TEX and I~TEX, I gradually
developed a public command list to provide this support. 4° This command list will
combine members of partitioned datasets into sequential files acceptable for TEX ,
run TEX and the corresponding output drivers in foreground or submit batch jobs,
and assist with the production of style files and the handling of \ i n c l u d e o n l y
in ISTEX. Though these functions depend on the local environment, some specific
connections between TEX and NEWLIB (note 40) might be of a more general
interest.

One of these connections helps to recall datasets that. have been migrated by
the storage managing system. Recall at run time will cause long delays for the
user, because files are recalled one after the other when they are used for the first
time. So it is desirable to recall them in bulk in advance and use the waiting
time for some editing. To recall datasets based on the ~ X \ j obname is rather

39 The index of the 'Leitfaden ~ (note 7) can be recommended as a tes t case to anyone t ry ing to write
index programs, though this index by no m e a n s conta ins all the possibilities to be dealt with in t h a t area
of research.

4o It is based on the DES¥ general edit ing sys t em NEWLIB, developed by Harald Butensch~n, and the
F s P fullscreen panel device, developed by Dietr/ch M~nkemeyer.

197

trivial, 'al but to do t h e same for datasets based on \ i n c l u d e o n l y names is not.
Our solution makes NEWLIB read the central .aux file and change it so that it
can be executed as a command list that will recall all datasets mentioned in it.

Though IATEX gives the possibility of running each part of a book on its own,
it does not allow the production of the whole book in independent pieces, be-
cause only Cross Reference and Table of Contents information is writ ten on a file
\ pa r t name . aux, i.e. a file associated with the specific part; all other informa-
tion, including Index information, is wri t ten on the files \ jobname . d v i , - . log ,
- . i d x . This means that finally the manuscript has to be processed in one piece
in spite of the parts. To circumvent this problem, we developed a replacement
procedure, which will rename \ j obname files to \ p a r t n a m e files after one part has
been run. Unfortunately, this will only work in foreground for reasons of dynamic
file allocation. In SCRIPT, we wrote macros that allow the running of a whole
book in parts also with a job-net, which can save a lot of stupid terminal work.
Judging from this experience, we should prefer a filename solution that would
generally allow a manuscript to be processed in paxts.

8. Manuscript S u p p o r t

There is also the field of manuscript support, which so far has not had the attention
it deserves. This term refers to all facilities which help to change and develop a
manuscript, to keep track of different versions or to link paper output to its
electronic sources. A first step already implemented in IATEX is a switch for
whether overful lines should be marked or not. The next step might be to produce
'come-from' information when generating a file, as we do when writing an index
file (see example above). But it seems worthwile to go a little further in this field.
During manuscript development, one should like also to know the file, date and
time of a source text. Instead of giving this information manually, we rely upon
the automatic services of NEWLIB. If a language like P L / 1 or TEX is specified,
NEWLIB will prefix a member with a so-called zero-card. Though this record
becomes part of the da ta in the file, it will be updated automatically, and it
will be invisible to the program because it comes as a comment card, like in the
following examples:

11104/86 604141427
(* 14/04/86

\QQ 14/04/86

MEMBER NAME PV0 (LVT) M TEX

MEMBER NAME PV0 (LVT) M PASCAL *)

MEMBER NAME PV0 (LVT) M LATEX

This feature is extended for TEX in the following way: if a l anguage different
from, but containing the string 'TEX' is specified, the comment delimiter will be
replaced by the control sequence \QQ. So date of creation, date and time of update
(if applicable), member name, datset name (in part), an 'g' to indicate an upper
and lower case character set, and the TEX dialect can be read by an appropriate

41 In IbTEX , it will be wise to name the style file for the specific project \job~ame.sty to support
automatic recall.

198

macro. The information can then be used in the text. A straightforward way
would be to use \marginpar , but in some cases, printing has to be postponed,
e.g. if a heading that follows the source information causes a page break. Printing
such information should not disturb line and page breaking either, so that it can
safely be left out in the final output. T~us, more convincing solutions still wait
to be found.

9. Conclusions

The problems we encountered during the production of 'Verhei~ung und Ver-
sprechen' seem to be typical of this area of typesetting, and they contain some
interesting aspects of using and adapting TEX. The solutions discussed here are
only a first try, developed under the pressure of time and without previous expe-
rience with TEX. To judge from several communications during the last months,
there is a growing demand for non-mathematical applications of TEX , and al-
though our solutions are not perfect, they may give a start to people with similar
problems.

But for me, there is more to TE X than just solving problems of typesetting.
In a paper presented at a meeting on "The Bible and Computers",42 I suggested
that Biblical computer projects could improve a lot if they adopted the principles
guiding TEX (as explained in note 13), above all the algorithmic approach and
the publishing of fully documented source code, and that TEX might even be used
as a common output standard for the different projects, provided the problems
described here could be solved. Thus, the preceding lines intend to encourage
philologists and to challenge the wizards to join their gifts in further development
in this field.

42 /]berlegungen zu einer maschinenlesbaren Ausgabe der Biblia Hebraica. Acres du Colloque ~Infor-
matique et Bible ~ , Louvain La-Neuve, Aofit 1985, in press.

P A R T I C I P A N T S

J. ANDR]~

W. APPELT

G.-D. BARG

K. BAZARGAN

B. BEETON

J.-Y. BIDAN

A. BINDING

C. BOOTH

P. BRIANQON

N. BROUARD

A. BRUGGEMANN-KLEIN

J. BRfJNING

G. CANZll

L, CARNES

IRISA, Campus de BeauIieu,
F-35042 Rennes Cedex

Gesellschaft fSr Mathemat/k und Datenveraxbeitung mbH, SchloB
BirIinghoven, Postfach 1240,
D-5205 Sankt Augustin 1

Fern UniversitEt, Rechenzentrum, Fei~hstr. 140,
D-5800 Hagen

Optics section, B1ackett Laboratory, Imperial College,
GB-London SW7 2BZ

American Math. Society, PO Box 6248,
USA-Providence, RI 02940

EDF, 1, av. du Gdndral-de-Gaulle,
F-92141 Clamart Cedex

Kaiserstr. 61,
D-6900 Heidelberg

University of Exeter Computer Unit, Math and Geology Building,
North Park Road,
GB-Exetex EX4 4QE

EDF, 1, av. du Ggngral-de-GauIle,
F-92141 Clamart Cedex

lIVED, 27, rue du Commandeur,
F-75675 Paris Cedex 14

Institut fSr Andgewandte Informatik, und Formale Beschrei-
bungsverfahren, Universit~t Karlsruhe (TH), Postfach 6380,
D-7500 Karlsruhe I

UniversitEt Konstanz, Rechenzentrum, UniversitEtstr., Post-
fach 5560,
D-7750 Konstanz

Te.Co.Gra£ snc, via Pacini 11,
1-20131 Milano

Personal TEX , Inc., 20, Sunnyslde Ave., Suite H,
USA-Mill Valley, CA 94941

200

D. CARTON

F. CHAHUNEAU

K. CHEMLA

P. CHEN

K. CHRISTIANSEN

D. CLAR

M. CLARK

J. COKER

E. CRISANTI

S.G.H. DANIELS

M. DEBAR

F. DI~SARMI~NIEN

J. Dl~SARM]~NIEN

P. DOLLAND

T. EHRHARD

S. FARAUT

M. FERGUSON

EDF, I, av. du Ggndral-de-Gaulte,
F-92141 Clamart Cedex

INRA, Laboratoire de Biomgtrie, CRJJ,
F-78350 Jouy-en-Josas

3, square Bolivar,
F-75019 Paris

Computer Science Division, 517 Evans Hall, Univ. of California,
Berkeley,
USA-Berkeley, CA 94720

Computer Science Dept., Univ. Aarhus, Ny Munkegade,
DK-8000 Aarhus

Service informatique, Sut~lec, Plateau du Moulon,
F-91190 Gif-sur-Yvette

Imperial College Computer Centre, Exhibition Road,
GB-London SW7 2BX

Computer Science Division, 517 Evans Halt, Univ. of California,
Berkeley,
USA-Berkeley, CA 94720

Te.Co.Gra£ snc, via Pacini t l ,
1-20131 Milano

Open University, Walton Hall,
GB-Milton Keynes MK7 6AA

Facult6 N.-D. de la Paix, Rue Grandgagnage 21,
B-5O00 Namur

PROBE, 26, av. des Fr~res-Lumi~re, BP 90,
F-78194 Trappes Cedex

Labo. typographie informatique, Universit6 Louis-Pasteur, 7, rue
Rend-Descartes,
F-67084 Strasbourg Cedex

Institut ffir Andgewandte Informatik, und Formale Besc!arei-
bungsverfahren, Universit~t Karlsruhe (TH), Postfach 6380,
D-7500 Karlsruhe 1

/~cole Polytectmique, Centre de math6matiques, 10, route de
Saclay,
F-91128 Palaiseau Cedex

11, rue Schweighaeuser,
F-67000 Strasbourg

12ffRS-T616communications, 3, P/ace du Commerce, I1e des Sonars,
CDN-Verdun, PQ H3E 1tt6

201

D. FOATA

G. FRIESLAND-KOPKE

W. GANDER

J. G. GARBESON

J. GL6CKNER

K. GUNTERMANN

R. HAINEBACH

A. HEINZ

E. HENTSCHEL

P. JACOBSEN

K. KAUTZ

M. KETTLER

G.-H. KNAUF

H. KR6GER

P. LA BRUNA

A. LAMPEN

Labo. typographie in.formatique, Universi~g Louis-Pasteur, 7, rue
Reng-Descartes,
F-67084 Strasbourg Cedex

FB Informatik, Universitgt Hamburg, Schl(iterstr. 70,
D-2000 Hamburg 13

Neu-Technikum,
CH-9470 Buchs

CIBA-GEIGY A G, R-1032.5.84, Postfach,
CH-4002 Basel

Lu der Hesse/23,
D-6908 Wiesloch

Technische Hochschule Darmstadt, Lustitut ffir Theoretische
Informatik, Fachbereich Informatik, Alexanderstr. 24,
D-6100 Darmstadt

Terhorst 19,
NL-6262 NA Banholt

Ins~itut ffir Andgewandte t_uformatik, und Form,de Beschrei-
bungsverfa&ren, Universit~f Kartsruhe (TH), Postfach 6380,
D-7500 Karlsruhe 1

F~utlingsgasse 2,
D-3400 GSttingen

EDP-Consultant, University of Oslo, USE, PO Box 1059,
Bllndern,
N-0316 Oslo 3

Technische Universitg~ Berlin, Institut flir Angewandte l.nfor-
matik, Frank/instr. 28/29,
D-1000 Berlin 10

ED Y Consulting, Post/'ach 1345,
D-8172 Lenggries

RRZN/Universitgt Hannover, Schlosswenderstr. 5,
D-3000 Hannover 1

Zentralblatt ffir Mathematik, Hardenbergstr. 29c,
D-1000 Berlin 12

Te.Co.Graf. snc, via Pacini 11,
1-20131 Milano

Tec.hn/sche Universi~ Berlin, Insti~u~ ffir Angewand~e ~ o r -
mat/k, Frank//ns~r. 28/29,
D-1000 Berlin 10

202

M. LANNES

S. LARSEN

Y. LEGRANDG~RARD

D. LUCARELLA

M. MANILI

K. MATTES

D. MAURER

J. MCCARRELL

M. MORRIS

J. NAVIA ROSENMANN

F. PARACCHINI

P. PENNY

H. PETERSEN

J. PICART

W. PIEPER

S. PROCTER

CNRS, Laboratoire d'optique dlectronique, 29, rue Jeanne-
Mar~6g,
F-31055 Toulouse Cedex

UNI-C, Ny Munkegade, Bldg. 540,
DK-8000 Aarhus

LITP, UER Math., Univ. Paris 7, 2, pIace Jussieu,
F-75005 Paris

Dip. di Scienze dell'Informazione, Univ. Milano, Via Moretto da
Brescia 9,
1-20133 Milano

Istituto Enciclopedia Italiana, Piazza Paganica 4,
1-00186 Roma

Springer- Verlag, Tiergartenstr. 17,
D-6900 Heidelberg

Informatik II, Universitgt des Saarlandes,
D-6600 Saarbr/icken

Computer Science Division, 517 Evans Hall, Univ. of California,
Berkeley,
USA-Berkeley, CA 94720

Addison-Wesley, De Lairessestraat 90,
NL-1071 PJ Amsterdam

CISI Tgldmatique, CEN BP 24,
F-91190 Gif-sur-Yvette

Dip. Scienze dell'Informazione, Univ. Milano, Via More~to da
Brescia 9,
1-20133 Milano

CNET, 38-40, rue du Ggngral-Lederc,
F-92131 Issy-tes-Moulineaux

RWTH, Rechenzentrum, Set'enter Vv~eg 23,
D-5100 Aachen

INRA, Laboratoire de Biomgtrie, CRJJ,
F-78350 Jouy en Josas

Union Internationale des Tglgcommunications, Place des Nations,
CH-1211 Gen&ve 20

Computer Science Division, 517 Evans Hall, Univ. of California,
Berkeley,
USA-Berkeley, CA 94720

V. QUINT Laboratoire de ggn/e informatique, IMA G, BP 68,
F-38402 St-Martin-d'H6res Cedex

203

P~. RABENSEIFNER

H. ROHNERT

J. RbHHICH

Y. ROY

P. SCHERBER

P.-K. SCHILLING

F. SCHOEN

a. SEROUL

R. SOUTHALL

K. THULL

T. TSCHEKE

I. VATTON

D. VIGNAUD

G. WElL

H. WENDT

M. WERSHOFEN

Rechenzentrum Universitgt Stuttgart, AiImandring 30,
D-7000 Stuttgart

FB 10, Universit~t Saarbriicken,
D-6600 Saarbrficken

Universitgt Karlsruhe, Institut /,/it In/,ormatik II,
D-75 Karlsruhe I

Labo. typographie in/'ormatique, Universitd Louis-Pasteur, 7, rue
Rang-Descartes,
F-67084 Strasbourg Cedex

Gesellschaft /'fir wissenscha/'tliche, Datenverarbeitung, Am
FaBberg,
D-3400 GSttingen

DESY-R02, Notkestr. 85,
D-2000 Hamburg 52

CNR-IAMI, via Cicognara 7,
1-20129 Milano

Labo. typographie informatique, Universitd Louis-Pasteur, 7, rue
Rend- Descartes,
F-67084 Strasbourg Cedex

Labo. typographie informatique, Universitd Louis-Pasteur, 7, rue
Rend-Descartes,
F-67084 Strasbourg Cedex

Inst./'fir Mathematik III der FU, ArnimMIee 2-6,
D-1 Berlin 33

Universitgtsdruckerei 1-I. Stfirtz A G, TUG-Mitgiied, Beethoven-
str. 5,
D-8700 Wiirzburg

Laboratoire de gdnie informatique, IMAG, BP 68,
F-38402 St-Martin-d'HSres Cedex

84, av. Secrdtan,
F-75019 Paris

Centre de cMcuI de Cronenbourg, 23,rue du Loess,
F-67200 Strasbourg

Springer-Verlag, Tiergartenstr. 17,
D-6900 Heidelberg

Gesellschaft f/it Mathematik, und Datenverarbeitung, Post-
fach 1240, SchloB Birlinghoven,
D-5205 St Augusgin I

R. WONNEBERGER

M. ZOCCHI

204

Drazhenstieg 5,
D-2000 Hamburg 63

Te.Co.Gra£ snc, Via Pacini 11,
I~20131 Milano

	front-matter
	1Running TEX in an interactive text processing environment
	2How to please authors and publishers A versatile document preparation system at karlsruhe
	3An improved user environment for TEX
	4The VORTEX document preparation environment
	5EasyTEX Towards interactive formulae input for scientific documents input with TEX
	6A multilingual TÊX
	7INRSTÊX A document preparation system for multiple languages
	8ASHTEX An interactive previewer for TEX or the marvellous world of ASHTEX
	9A language to describe formatting directives for SGML documents
	10Retrieving mathematical formulae
	11Integrating TEX in an edds with very high resolution capabilities
	12The TEX — based document factory in a university environment Process model, implementation steps, experiences
	13Grif An interactive environment for TEX
	14Abstract markup in TEX
	15Designing a new typeface with METAFONT
	16“Verheißung und Versprechen” a third generation approach to theological typesetting
	back-matter

